首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   343篇
  免费   31篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   5篇
  2016年   4篇
  2015年   19篇
  2014年   8篇
  2013年   20篇
  2012年   20篇
  2011年   21篇
  2010年   7篇
  2009年   7篇
  2008年   15篇
  2007年   10篇
  2006年   28篇
  2005年   18篇
  2004年   16篇
  2003年   23篇
  2002年   18篇
  2001年   2篇
  2000年   3篇
  1998年   5篇
  1997年   7篇
  1996年   4篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   5篇
  1990年   4篇
  1989年   5篇
  1988年   6篇
  1987年   2篇
  1986年   3篇
  1985年   7篇
  1984年   6篇
  1983年   2篇
  1982年   8篇
  1981年   9篇
  1980年   9篇
  1979年   2篇
  1978年   2篇
  1977年   4篇
  1976年   6篇
  1975年   5篇
  1973年   7篇
  1972年   1篇
  1964年   1篇
  1963年   1篇
  1961年   1篇
排序方式: 共有374条查询结果,搜索用时 359 毫秒
181.
182.
183.
Archaea, constituting a third domain of life between Eubacteria and Eukarya, characteristically inhabit extreme environments. They swim by rotating flagellar filaments that are phenomenologically and functionally similar to those of eubacteria. However, biochemical, genetic and structural evidence has pointed to significant differences but even greater similarity to eubacterial type IV pili. Here we determined the three-dimensional symmetry and structure of the flagellar filament of the acidothermophilic archaeabacterium Sulfolobus shibatae B12 using transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). Processing of the cryo-negatively stained filaments included analysis of their helical symmetry and subsequent single particle reconstruction. Two filament subunit packing arrangements were identified: one has helical symmetry, similar to that of the extreme halophile Halobacterium salinarum, with ten subunits per 5.3 nm repeat and the other has helically arranged stacked disks with C3 symmetry and 12 subunits per repeat. The two structures are related by a slight twist. The S. shibatae filament has a larger diameter compared to that of H. salinarum, at the opposite end of the archaeabacterial phylogenetic spectrum, but the basic three-start symmetry and the size and arrangement of the core domain are conserved and the filament lacks a central channel. This similarity suggests a unique and common underlying symmetry for archaeabacterial flagellar filaments.  相似文献   
184.
The Mediterranean fruit fly (Ceratitis capitata) is a cosmopolitan pest of hundreds of species of commercial and wild fruits. It is considered a major economic pest of commercial fruits in the world. Adult Mediterranean fruit flies feed on all sorts of protein sources, including animal excreta, in order to develop eggs. After reaching sexual maturity and copulating, female flies lay eggs in fruit by puncturing the skin with their ovipositors and injecting batches of eggs into the wounds. In view of the increase in food-borne illnesses associated with consumption of fresh produce and unpasteurized fruit juices, we investigated the potential of Mediterranean fruit fly to serve as a vector for transmission of human pathogens to fruits. Addition of green fluorescent protein (GFP)-tagged Escherichia coli to a Mediterranean fruit fly feeding solution resulted in a dose-dependent increase in the fly's bacterial load. Flies exposed to fecal material enriched with GFP-tagged E. coli were similarly contaminated and were capable of transmitting E. coli to intact apples in a cage model system. Washing contaminated apples with tap water did not eliminate the E. coli. Flies inoculated with E. coli harbored the bacteria for up to 7 days following contamination. Fluorescence microscopy demonstrated that the majority of fluorescent bacteria were confined along the pseudotrachea in the labelum edge of the fly proboscis. Wild flies captured at various geographic locations were found to carry coliforms, and in some cases presumptive identification of E. coli was made. These findings support the hypothesis that the common Mediterranean fruit fly is a potential vector of human pathogens to fruits.  相似文献   
185.
Inactivation of West-Nile virus during peptic cleavage of horse plasma IgG.   总被引:1,自引:0,他引:1  
Peptic cleavage of horse plasma IgG is a common procedure for the preparation of F(ab)(2) products for human use, such as antivenin and antitoxin. The removal of the Fc fragment from the IgG molecule by enzymatic cleavage at low pH, ensures fewer side-effects of the F(ab)(2) product for passive immunotherapy compared with the whole IgG molecule. Since the starting material may be contaminated by zoonotic horse viruses, it is necessary to demonstrate the removal or inactivation of possible viral contaminants. Guidelines for performing such studies were published by the Commission for Plasma-Derived Medical Products (CPMP), and updated by the Committee for Proprietary Medical Products. It is recommended that viral clearance studies be performed on scaled down production processes that have been identified as possibly contributing to virus clearance and spiking of a model virus to the starting material. The model virus should be non-pathogenic but closely related to the potential infective virus. By quantifying the amount of virus in the product before and after the production process, the amount of virus cleared can be determined. Log(10) reductions of the order of 4 logs or more, and a biphasic inactivation curve (fast initial phase followed by a slower phase), are indicative of a clearance effect with a particular test virus under investigation.  相似文献   
186.
Non-Homologous End Joining (NHEJ) is one of the two major pathways of DNA Double Strand Breaks (DSBs) repair. Mutations in human NHEJ genes can lead to immunodeficiency due to its role in V(D)J recombination in the immune system. In addition, most patients carrying mutations in NHEJ genes display developmental anomalies which are likely the result of a general defect in repair of endogenously induced DSBs such as those arising during normal DNA replication. Cernunnos/XLF is a recently identified NHEJ gene which is mutated in immunodeficiency with microcephaly patients. Here we aimed to investigate whether Cernunnos/XLF mutations disrupt the ability of patient cells to respond to replication stress conditions. Our results demonstrate that Cernunnos/XLF mutated cells and cells downregulated for Cernunnos/XLF have increased sensitivity to conditions which perturb DNA replication. In addition, under replication stress, these cells exhibit impaired DSB repair and increased accumulation of cells in G2/M. Moreover Cernunnos/XLF mutated and down regulated cells display greater chromosomal instability, particularly at fragile sites, under replication stress conditions. These results provide evidence for the role of Cernunnos/XLF in repair of DSBs and maintenance of genomic stability under replication stress conditions. This is the first study of a NHEJ syndrome showing association with impaired cellular response to replication stress conditions. These findings may be related to the clinical features in these patients which are not due to the V(D)J recombination defect. Additionally, in light of the emerging important role of replication stress in the early stages of cancer development, our findings may provide a mechanism for the role of NHEJ in preventing tumorigenesis.  相似文献   
187.
Ultraviolet (UV) irradiation is a major environmental factor responsible for a high incidence of premature skin aging, referred to as photoaging, as well as skin cancer and melanoma. UVA irradiation represents 90% of the solar UV light reaching the earth's surface, and yet the mechanisms by which it exerts its biological effects are not clear. UVA penetrates into the skin tissue, reaching the basal layers of the active dividing cells and, therefore, the contribution of UVA to skin damage may be significant. The majority of UVA energy is absorbed by unidentified photosensitizers in the cells which are postulated to generate reactive oxygen species (ROS). It has been believed that both chronological aging and photoaging share the same molecular features and, as such, it is very common to utilize UV irradiation for induction of skin aging. To determine the involvement of protein kinase isoforms in chronological aging and photoaging, we utilized in vitro aging model systems of primary murine fibroblasts and primary fibroblasts isolated from PKC null mice. We show for the first time distinct involvement of PKC isoforms PKCdelta and PKCalpha in photoaging versus cellular senescence. While chronological aging is accompanied by overexpression and activation of PKCalpha, UV irradiation and ROS production are associated with photoaging accompanied by PKCdelta downregulation and nuclear translocation.  相似文献   
188.
Phosphotyrosine proteins involvement, particularly cortactin, was studied in cell–cell contacts of cultured bovine corneal endothelial (BCE) cells. These proteins, including α-catenin, vinculin and cortactin, are localized at cell–cell contacts separate from the cortical actin ring. Approximately 50% of cortactin isoforms p80 and p85 were associated with the Triton-insoluble fraction while phosphotyrosine proteins were in the soluble fraction. Disruption of cell–cell contacts by EDTA treatment was associated with a decrease in cortactin isoforms p80 (26%) and p85 (57%). Cortactin isoform p85 was phosphorylated at Y466, expressed in reattaching cells and associated with the Triton-soluble fraction, whereas cortactin isoform p80 was phosphorylated at Y421 and associated with the Triton-insoluble fraction. In sub-confluent cultures, pY421-cortactin was localized at the leading edge and pY466-cortactin at a perinuclear area. In confluent cultures both pY466- and pY421-cortactin isoforms were localized at the cell–cell contacts. In conclusion, in BCE cells, the most prominent appearance of cortactin was at the cell–cell contacts separate from the cortical actin ring. Isoform p80 was phosphorylated at Y421 and associated with the Triton-insoluble fraction and isoform p85 was phosphorylated at Y466 and associated with the Triton-insoluble fraction.  相似文献   
189.
We report the realization of electrical coupling between neurons and depletion type floating gate (FG) p-channel MOS transistors. The devices were realized in a shortened 0.5 μm CMOS technology. Increased boron implant dose was used to form the depletion type devices. Post-CMOS processing steps were added to expose the devices sensing area. The neurons are coupled to the polycrystalline silicon (PS) FG through 420 Å thermal oxide in an area which is located over the thick field oxide away from the transistor. The combination of coupling area pad having a diameter of 10 or 15 μm and sensing transistor with W/L of 50/0.5 μm results in capacitive coupling ratio of the neuron signal of about 0.5 together with relatively large transistor transconductance. The combination of the FG structure with a depletion type device, leads to the following advantages. (a) No need for dc bias between the solution in which the neurons are cultured and the transistor with expected consequences to the neuron as well as the silicon die durability. (b) The sensing area of the neuron activity is separated from the active area of the transistor. Thus, it is possible to design the sensing area and the channel area separately. (c) The channel area, which is the most sensitive part of the transistor, can be insulated and shielded from the ionic solution in which the neurons are cultured. (d) There is an option to add a switching transistor to the FG and use the FG also for the neuron stimulation.  相似文献   
190.
Spiroplasma are members of the Mollicutes (Mycoplasma, Acholeplasma and Spiroplasma) - the simplest, minimal, free-living and self-replicating forms of life. The mollicutes are unique among bacteria in completely lacking cell walls and flagella and in having an internal, contractile cytoskeleton, which also functions as a linear motor. Spiroplasma are helical, chemotactic and viscotactic active swimmers. The Spiroplasmal cytoskeleton is a flat ribbon composed of seven pairs of fibrils. The ribbon is attached to the inner side of the cell membrane along its innermost (shortest) helical line. The cell's geometry and dynamic helical parameters, and consequently motility, can be controlled by changing differentially and in a co-ordinated manner, the length of the fibrils. We identified several consistent modes of cell movements and motility originating, most likely, as a result of co-operative or local molecular switching of fibrils: (i). regular extension and contraction within the limits of helical symmetry (this mode also includes straightening, beyond what is allowed by helical symmetry, and reversible change of helical sense); (ii). spontaneous and random change of helical sense originating at random sites along the cell (these changes propagate along the cell in either direction and hand switching is completed within approximately 0.08 second); (iii). forming a deformation on one of the helical turns and propagating it along the cell (these helical deformations may travel along the cell at a speed of up to approximately 40 microm s-1); (iv). random bending, flexing and twitching (equivalent to tumbling). In standard medium (viscosity = 1.147 centipoise) the cells run at approximately 1.5 microm s-1, have a Reynolds number of approximately 3.5 x 10-6 and consume approximately 30 ATP molecules s-1. Running velocity, duration, persistence and efficiency increase with viscosity upon adding ficoll, dextran and methylcellulose to standard media. Relative force measurements using optical tweezers confirm these findings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号