首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   190篇
  免费   42篇
  232篇
  2021年   2篇
  2019年   1篇
  2018年   6篇
  2017年   3篇
  2016年   2篇
  2015年   9篇
  2014年   6篇
  2013年   3篇
  2012年   4篇
  2011年   8篇
  2010年   6篇
  2009年   10篇
  2008年   6篇
  2007年   6篇
  2006年   4篇
  2005年   2篇
  2004年   4篇
  2003年   6篇
  2002年   7篇
  2001年   7篇
  2000年   6篇
  1999年   7篇
  1998年   10篇
  1997年   7篇
  1996年   9篇
  1995年   7篇
  1994年   4篇
  1993年   5篇
  1992年   6篇
  1991年   7篇
  1990年   6篇
  1989年   3篇
  1988年   3篇
  1987年   6篇
  1986年   5篇
  1985年   6篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   5篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1977年   5篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
排序方式: 共有232条查询结果,搜索用时 0 毫秒
81.
Despite the major advancements during the last decade with respect to both knowledge of higher order chromatin organization in the cell nucleus and the elucidation of epigenetic mechanisms of gene control, the true three-dimensional (3D) chromatin structure of endogenous active and inactive gene loci is not known. The present study was initiated as an attempt to close this gap. As a model case, we compared the chromatin architecture between the genetically active and inactive domains of the imprinted Prader-Willi syndrome (PWS) locus in human fibroblast and lymphoblastoid cell nuclei by 3D fluorescence in situ hybridization and quantitative confocal laser scanning microscopy. The volumes and 3D compactions of identified maternal and paternal PWS domains were determined in stacks of light optical serial sections using a novel threshold-independent approach. Our failure to detect volume and compaction differences indicates that possible differences are below the limits of light optical resolution. To overcome this limitation, spectral precision distance microscopy, a method of localization microscopy at the nanometer scale, was used to measure 3D distances between differentially labeled probes located both within the PWS region and in its neighborhood. This approach allows the detection of intranuclear differences between 3D distances down to about 70-90 nm, but again did not reveal clearly detectable differences between active and inactive PWS domains. Despite this failure, a comparison of the experimental 3D distance measurements with computer simulations of chromatin folding strongly supports a non-random higher order chromatin configuration of the PWS locus and argues against 3D configurations based on giant chromatin loops. Our results indicate that the search for differences between endogenous active and inactive PWS domains must be continued at still smaller scales than hitherto possible with conventional light microscopic procedures. The possibilities to achieve this goal are discussed.  相似文献   
82.
83.
Bestvater F  Knoch TA  Langowski J  Spiess E 《BioTechniques》2002,32(4):844, 846, 848-844,50 passim
Several GFP variants have been developedfor multicolor labeling in vivo. Here we report that simultaneous co-transfection of fluorescent protein chimeras can give false-positive results caused by the conversion of spectral properties. Under standard transfection conditions, approximately 8% of cells produce false-positive results, but, depending on the conditions, up to 26% of the cells permanently express altered fusion proteins. This compromises the interpretation of the results. The conversion is independent of transfection methods or cell types. Our results show that the effect is based on homologous recombination/repair/replication process events that occur between the nucleotide sequences of the fluorescent proteins. Consecutive transfection or low sequence similarities avoided recombination. The appearance of conversion facilitates exchanges of spectral properties infusion proteins, the creation of libraries, or the assembly of DNA fusion constructs in vivo. The detailed quantification of the conversion rate allows the investigation of recombination/repair/replication processes in general.  相似文献   
84.
The thermodynamic parameters of five different highly purified viroid "species" were determined by applying UV-absorption melting analysis and temperature jump methods. Their thermal denaturation proved to be a highly cooperative process with midpoint-temperatures (Tm) between 48.5 and 51 degrees C in 0.01 M sodium cacodylate, 1 mM EDTA, pH 6.8. The values of the apparent reaction enthalpies of the different viroid species range between 3,140 and 3,770 kJ/mol. Although the cooperativity is as high as found in homogeneous RNA double helices the Tm-value of viroid melting is more than 30 degrees C lower than in the homogeneous RNA. In order to explain this deviation, melting curves were simulated for different models of the secondary structure of viroids using literature values of the thermodynamic parameters of nucleic acids. Our calculations show that the following refinement of our earlier model is in complete accordance with the experimental data: In their native conformation viroids exist as an extended rodlike structure characterized by a series of double helical sections and internal loops. In the different viroid species 250-300 nucleotides out of total 350 nucleotides are needed to interprete the thermodynamic behaviour.  相似文献   
85.
The Escherichia coli low-copy-number plasmid R1 contains a segregation machinery composed of parC, ParR and parM. The R1 centromere-like site parC contains two separate sets of repeats. By atomic force microscopy (AFM) we show here that ParR molecules bind to each of the 5-fold repeated iterons separately with the intervening sequence unbound by ParR. The two ParR protein complexes on parC do not complex with each other. ParR binds with a stoichiometry of about one ParR dimer per each single iteron. The measured DNA fragment lengths agreed with B-form DNA and each of the two parC 5-fold interon DNA stretches adopts a linear path in its complex with ParR. However, the overall parC/ParR complex with both iteron repeats bound by ParR forms an overall U-shaped structure: the DNA folds back on itself nearly completely, including an angle of ~150°. Analysing linear DNA fragments, we never observed dimerized ParR complexes on one parC DNA molecule (intramolecular) nor a dimerization between ParR complexes bound to two different parC DNA molecules (intermolecular). This bacterial segrosome is compared to other bacterial segregation complexes. We speculate that partition complexes might have a similar overall structural organization and, at least in part, common functional properties.  相似文献   
86.
The Brownian Dynamics technique was used to model a diffusion-controlled intramolecular reaction of supercoiled DNA (2500 basepairs) in 0.1 M sodium chloride solution. The distance between the reactive groups along the DNA contour was 470 basepairs. The reaction radius was varied from 6 to 20 nm. The results are presented in terms of the probability distribution P(F)(t) of the first collision time. The general form of the function P(F)(t) could be correctly predicted by a simple analytical model of one-dimensional diffusion of the superhelix ends along the DNA contour. The distribution P(F)(t) is essentially non-exponential: within a large initial time interval, it scales as P(F)(t) approximately t(-1/2), which is typical for one-dimensional diffusion. However, the mean time of the first collision is inversely proportional to the reaction radius, as in three dimensions. A visual inspection of the simulated conformations showed that a considerable part of the collisions is caused by the bending of the superhelix axis in the regions of the end loops, where the axis is most flexible. This fact explains why the distribution P(F)(t) combines the features of one- and three-dimensional diffusion. The simulations were repeated for a DNA chain with a permanent bend of 100 degrees in the middle position between the reactive groups along the DNA contour. The permanent bend changes dramatically the form of the distribution P(F)(t) and reduces the mean time of the first collision by approximately one order of magnitude.  相似文献   
87.
88.
Tóth K  Brun N  Langowski J 《Biochemistry》2001,40(23):6921-6928
While the structure of the nucleosome core is known in atomic detail, the precise geometry of the DNA beyond the core particle is still unknown. We have used fluorescence resonance energy transfer (FRET) for determining the end-to-end distance of DNA fragments assembled with histones into nucleosomes. The DNA of a length of 150-220 bp was labeled with rhodamine-X on one end and fluorescein or Alexa 488 on the other. Assembling nucleosomes on these DNA fragments leads to a measurable energy transfer. The end-to-end distance computed from the FRET increases from 60 +/- 5 A at 150 bp to 75 +/- 5 A at 170 bp without measurable change above it. These distances are compatible with different geometries of the linker DNA, all having in common that no crossing can be observed up to 220 bp. Addition of H1 histone leads to an increase in energy transfer, indicating a compaction of the linker DNA toward the nucleosome.  相似文献   
89.
90.
Microtubules isolated from brain extracts by in vitro assembly (1, 19, 23) are composed principally of two tubulins and two high molecular weight proteins (microtubule-associated proteins [MAPS] 1 and 2) (2,5,7,20). Recently, it was demonstrated that in vitro-assembled brain microtubules (neurotubules) are coated with filaments (5, 7) which are similar to the filaments attached to neurotubules in situ (4, 15, 21, 24, 25), and it was suggested that the filaments are composed of the higher molecular weight MAPs (5, 7, 12). In this study, microtubules were assembled in the presence and absence of the MAPs, and thin sections of the microtubules were examined by electron microscopy. The results show that the filaments only occur on microtubules assembled in the presence of the MAPs and it is therefore concluded that the filaments are composed of the high molecular weight MAP's.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号