首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   7篇
  130篇
  2022年   1篇
  2021年   2篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   6篇
  2013年   5篇
  2012年   7篇
  2011年   5篇
  2010年   4篇
  2009年   6篇
  2008年   6篇
  2007年   10篇
  2006年   4篇
  2005年   7篇
  2004年   2篇
  2003年   8篇
  2002年   6篇
  2001年   8篇
  2000年   5篇
  1999年   10篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1988年   2篇
  1986年   1篇
排序方式: 共有130条查询结果,搜索用时 9 毫秒
111.
Catecholamine-induced lipolysis is chiefly mediated through the recently characterized beta 3-adrenergic receptor (AR) in rat adipocytes. Discrepancies between the ability of beta 3-AR agonists to stimulate adenylyl cyclase and the resulting lipolysis were recently reported. cAMP-dependent protein kinase (A-kinase) activation induced by these agonists was compared to lipolysis. Agonist potencies were similar for A-kinase activity ratios and lipolysis. The same A-kinase activity ratio to lipolysis relationship was found for the beta 3-AR agonists tested.  相似文献   
112.
In common bean, a complex disease resistance (R) gene cluster, harboring many specific R genes against various pathogens, is located at the end of the linkage group B4. A BAC library of the Meso-american bean genotype BAT93 was screened with PRLJ1, a probe previously shown to be specific to the B4 R gene cluster, leading to the identification of 73 positive BAC clones. BAC-end sequencing (BES) of the 73 positive BACs generated 75 kb of sequence. These BACs were organized into 6 contigs, all mapped at the B4 R gene cluster. To evaluate the potential of BES for marker development, BES-derived specific primers were used to check for linkage with two allelic anthracnose R specificities Co-3 and Co-3 ( 2 ), through the analysis of pairs of Near Isogenic Lines (NILs). Out of 32 primer pairs tested, two revealed polymorphisms between the NILs, confirming the suspected location of Co-3 and Co-3 ( 2 ) at the B4 cluster. In order to identify the orthologous region of the B4 R gene cluster in the two model legume genomes, bean BESs were used as queries in TBLASTX searches of Medicago truncatula and Lotus japonicus BAC clones. Putative orthologous regions were identified on chromosome Mt6 and Lj2, in agreement with the colinearity observed between Mt and Lj for these regions.  相似文献   
113.
114.
Anthracnose, caused by the hemibiotrophic fungal pathogen Colletotrichum lindemuthianum is a devastating disease of common bean. Resistant cultivars are economical means for defense against this pathogen. In the present study, we mapped resistance specificities against 7 C. lindemuthianum strains of various geographical origins revealing differential reactions on BAT93 and JaloEEP558, two parents of a recombinant inbred lines (RILs) population, of Meso-american and Andean origin, respectively. Six strains revealed the segregation of two independent resistance genes. A specific numerical code calculating the LOD score in the case of two independent segregating genes (i.e. genes with duplicate effects) in a RILs population was developed in order to provide a recombination value (r) between each of the two resistance genes and the tested marker. We mapped two closely linked Andean resistance genes (Co-x, Co-w) at the end of linkage group (LG) B1 and mapped one Meso-american resistance genes (Co-u) at the end of LG B2. We also confirmed the complexity of the previously identified B4 resistance gene cluster, because four of the seven tested strains revealed a resistance specificity near Co-y from JaloEEP558 and two strains identified a resistance specificity near Co-9 from BAT93. Resistance genes found within the same cluster confer resistance to different strains of a single pathogen such as the two anthracnose specificities Co-x and Co-w clustered at the end of LG B1. Clustering of resistance specificities to multiple pathogens such as fungi (Co-u) and viruses (I) was also observed at the end of LG B2.  相似文献   
115.
Transcriptomics applied to obesity and caloric restriction   总被引:2,自引:0,他引:2  
Caloric restriction still remains the most efficient way to promote weight loss. Deciphering the molecular basis of adaptation to energy restriction is critical for the tailoring of new therapeutic strategies. This review focuses on the recent input of gene profiling on adipose tissue in obesity pathogenesis and on the new insights on adaptations occurring during very low caloric diet (VLCD) in humans. Hypocaloric diets improve a wide range of metabolic parameters including lipolytic efficiency, insulin sensitivity, and inflammatory profile. In the subcutaneous white adipose tissue (scWAT) the VLCD induced a decrease in the mRNA levels for the antilipolytic alpha2-adrenergic receptor associated with changes in catecholamine-induced adipocyte lipolytic capacity. The improvement in insulin sensitivity was not associated with a change in subcutaneous adipose tissue adiponectin gene expression or in its plasma level, suggesting that adiponectin is not involved in the regulation of VLCD-induced improvement of insulin sensitivity and that there is a small contribution of subcutaneous adipose tissue to plasma adiponectin levels. Pangenomic microarray studies in human scWAT revealed that a panel of inflammatory markers and acute phase reactants were over expressed in obese compared to lean subjects. Caloric restriction improved the inflammatory profile of obese subjects through a decrease of pro-inflammatory factors and an increase of anti-inflammatory molecules. These genes were mostly expressed in the stroma vascular fraction of the adipose tissue. Specific cell-type isolation and immunohistochemistry demonstrated that monocyte/macrophage lineage cells were responsible for the expression of both mRNA and protein inflammatory markers. The acute phase proteins serum amyloid A was highly expressed in mature adipocytes from obese subjects. Caloric restriction decreased both serum amyloid mRNA and circulating levels. Obesity now clearly appears as chronic low-grade inflammation state. Modulation of the inflammatory pathways may represent new therapeutic targets for the treatment of obesity-related complications.  相似文献   
116.
Nitrogen starvation is generally assumed to be encountered by biotrophic and hemibiotrophic plant fungal pathogens at the beginning of their infection cycle. We tested whether nitrogen starvation constitutes a cue regulating genes that are required for pathogenicity of Colletotrichum lindemuthianum, a fungal pathogen of common bean. The clnr1 (C. lindemuthianumnitrogen regulator 1) gene, the areA/nit-2 orthologue of C. lindemuthianum, was isolated. The predicted CLNR1 protein exhibits high amino acid sequence similarities with the AREA and NIT2 global fungal nitrogen regulators. Targeted clnr1- mutants are unable to use a wide array of nitrogen sources, indicating that clnr1 is the C. lindemuthianum major nitrogen regulatory gene. The clnr1- mutants are non-pathogenic, although few anthracnose lesions seldom occur on whole plantlets. Surprisingly, cytological analysis reveals that the clnr1- mutants are not disturbed from the penetration stage until the end of the biotrophic phase, but that they are impaired during the setting up of the necrotrophic phase. Thus, through CLNR1, nitrogen starvation constitutes a cue for the regulation of genes that are compulsory for this stage of the C. lindemuthianum infection process. Additionally, clnr1- mutants complemented with the Aspergillus nidulans areA gene are fully pathogenic, indicating that areA is able to activate the C. lindemuthianum suited genes, normally under the control of clnr1.  相似文献   
117.
Fifteen populations of wild bean (Phaseolus vulgaris), located in three provinces in Argentina, were analysed for their polymorphism for a complex resistance gene candidate (RGC) family clustered on the genome and for resistance phenotypes to strains of Colletotrichum lindemuthianum. Results indicate that RGC polymorphism is high. Population structure obtained for markers related to resistance was compared to population structure obtained for RAPD markers in order to infer the evolutionary forces driving polymorphism for resistance in wild populations at both molecular and phenotypic levels. Hierarchical analysis of differentiation showed that, within provinces, populations were differentiated for RAPD as well as for molecular and phenotypic markers of resistance. In contrast, provinces were differentiated only for RAPD and RGC markers and not for resistance phenotypes. The discrepancies found between diversity structures for molecular markers (RAPD and RGCs) and for resistance phenotypes suggest an effect of selection and indicate that diversity for resistance may not be driven by the same selective forces at the molecular and phenotypic levels. We further discuss whether specific selective forces are exerted on RGC markers and underline the importance of spatial scale of analysis for demonstrating an impact of selection.  相似文献   
118.
119.
120.
Impala is an active DNA transposon family that was first identified in a strain of Fusarium oxysporum pathogenic to melon. The 10 copies present in this strain define three subfamilies that differ by about 20% at the nucleotide level. This high level of polymorphism suggests the existence of an ancestral polymorphism associated with vertical transmission and/or the introduction of some subfamilies by horizontal transfer from another species. To gain insights into the molecular evolution of this family, impala distribution was investigated in strains with various host specificities by Southern blot, PCR, and sequencing. Detection of impala elements in most of the F. oxysporum strains tested indicates that impala is an ancient component of the F. oxysporum genome. Subfamily-specific amplifications and sequence and phylogenetic analyses revealed five subfamilies, several of which can be found within the same genome. This supports the hypothesis of an ancestral polymorphism followed by vertical transmission and independent evolution in the host-specific forms. Highly similar elements showing unique features (internal deletions, high rates of CG-to-TA transitions) or being present at the same genomic location were identified in several strains with different host specificities, raising questions about the phylogenetic relationships of these strains. A phylogenetic analysis performed by sequencing a portion of the EF1alpha gene showed in most cases a correlation between the presence of a particular element and a close genetic relationship. All of these data provide important information on the evolutionary origin of this element and reveal its potential as a valuable tool for tracing populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号