首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3712篇
  免费   279篇
  国内免费   1篇
  3992篇
  2022年   22篇
  2021年   40篇
  2020年   24篇
  2019年   28篇
  2018年   34篇
  2017年   35篇
  2016年   76篇
  2015年   143篇
  2014年   163篇
  2013年   182篇
  2012年   228篇
  2011年   202篇
  2010年   136篇
  2009年   127篇
  2008年   177篇
  2007年   158篇
  2006年   166篇
  2005年   170篇
  2004年   136篇
  2003年   150篇
  2002年   153篇
  2001年   73篇
  2000年   81篇
  1999年   81篇
  1998年   40篇
  1997年   38篇
  1996年   48篇
  1995年   34篇
  1994年   40篇
  1993年   39篇
  1992年   51篇
  1991年   52篇
  1990年   64篇
  1989年   53篇
  1988年   35篇
  1987年   42篇
  1986年   32篇
  1985年   32篇
  1984年   39篇
  1983年   37篇
  1982年   36篇
  1981年   25篇
  1980年   22篇
  1979年   33篇
  1978年   39篇
  1977年   27篇
  1976年   29篇
  1975年   26篇
  1974年   42篇
  1972年   23篇
排序方式: 共有3992条查询结果,搜索用时 15 毫秒
991.

Background

The TLR9 agonist CpG is increasingly applied in preclinical and clinical studies as a therapeutic modality to enhance tumor immunity. The clinical application of CpG appears, however, less successful than would be predicted from animal studies. One reason might be the different administration routes applied in most mouse studies and clinical trials. We studied whether the efficacy of CpG as an adjuvant in cancer immunotherapy is dependent on the route of CpG administration, in particular when the tumor is destructed in situ.

Methodology/Principal Findings

In situ tumor destruction techniques are minimally invasive therapeutic alternatives for the treatment of (nonresectable) solid tumors. In contrast to surgical resection, tumor destruction leads to the induction of weak but tumor-specific immunity that can be enhanced by coapplication of CpG. As in situ tumor destruction by cryosurgery creates an instant local release of antigens, we applied this model to study the efficacy of CpG to enhance antitumor immunity when administrated via different routes: peritumoral, intravenous, and subcutaneous but distant from the tumor. We show that peritumoral administration is superior in the activation of dendritic cells, induction of tumor-specific CTL, and long-lasting tumor protection. Although the intravenous and subcutaneous (at distant site) exposures are commonly used in clinical trials, they only provided partial protection or even failed to enhance antitumor responses as induced by cryosurgery alone.

Conclusions/Significance

CpG administration greatly enhances the efficacy of in situ tumor destruction techniques, provided that CpG is administered in close proximity of the released antigens. Hence, this study helps to provide directions to fully benefit from CpG as immune stimulant in a clinical setting.  相似文献   
992.
Cystic fibrosis (CF), the most common genetic disease among Caucasians, is caused by mutations in the gene encoding CFTR (cystic fibrosis transmembrane conductance regulator). The most frequent mutation, DeltaF508, results in protein misfolding and, as a consequence, prevents CFTR from reaching its final location at the cell surface. CFTR is expressed in various cell types including red blood cells. The functional role of CFTR in erythrocytes is still unclear. Since the number of CFTR copies in a single erythrocyte of healthy donors and CF patients with a homozygous DeltaF508 mutation is unknown, we counted CFTR, localized in erythrocyte plasma membrane, at the single molecule level. A novel experimental approach combining atomic force microscopy with quantum-dot-labeled anti-CFTR antibodies, used as topographic surface markers, was employed to detect individual CFTR molecules. Analysis of erythrocyte plasma membranes taken from healthy donors and CF patients with a homozygous DeltaF508 mutation reveals mean (SEM) values of 698 (12.8) (n=542) and 172 (3.8) (n=538) CFTR molecules per red blood cell, respectively. We conclude that erythrocytes reflect the CFTR status of the organism and that quantification of CFTR in a blood sample could be useful in the diagnosis of CFTR related diseases.  相似文献   
993.

Objectives

To determine the role of macrophage ATP-binding cassette transporter A5 (ABCA5) in cellular cholesterol homeostasis and atherosclerotic lesion development.

Methods and results

Chimeras with dysfunctional macrophage ABCA5 (ABCA5−M/−M) were generated by transplantation of bone marrow from ABCA5 knockout (ABCA5−/−) mice into irradiated LDLr−/− mice. In vitro, bone marrow-derived macrophages from ABCA5−M/−M chimeras exhibited a 29% (P < 0.001) decrease in cholesterol efflux to HDL, whereas a 21% (P = 0.07) increase in cholesterol efflux to apoA-I was observed. Interestingly, expression of ABCA1, but not ABCG1, was up-regulated in absence of functional ABCA5 in macrophages. To induce atherosclerosis, the transplanted LDLr−/− mice were fed a high-cholesterol Western-type diet (WTD) for 6, 10, or 18 weeks, allowing analysis of effects on initial as well as advanced lesion development. Atherosclerosis development was not affected in male ABCA5−M/−M chimeras after 6, 10, and 18 weeks WTD feeding. However, female ABCA5−M/−M chimeras did develop significantly (P < 0.05) larger aortic root lesions as compared with female controls after 6 and 10 weeks WTD feeding.

Conclusions

ABCA5 influences macrophage cholesterol efflux, and selective disruption of ABCA5 in macrophages leads to increased atherosclerotic lesion development in female LDLr−/− mice.  相似文献   
994.
995.
MOTIVATION: Advances in the field of cheminformatics have been hindered by a lack of freely available tools. We have created Chembench, a publicly available cheminformatics portal for analyzing experimental chemical structure-activity data. Chembench provides a broad range of tools for data visualization and embeds a rigorous workflow for creating and validating predictive Quantitative Structure-Activity Relationship models and using them for virtual screening of chemical libraries to prioritize the compound selection for drug discovery and/or chemical safety assessment. AVAILABILITY: Freely accessible at: http://chembench.mml.unc.edu CONTACT: alex_tropsha@unc.edu  相似文献   
996.
997.
998.
999.
The effect of transient exposure of Staphylococcus aureus enterotoxin A (SEA) to high pressure and/or denaturing agents was examined by assessing the toxin superantigenicity and immunoreactivity, and by monitoring pressure-induced changes in fluorescence emission spectra. Pressurization of SEA at 600 MPa and 45 °C in Tris–HCl buffer (20 mM, pH 7.4) resulted in a marked increase in both T-cell proliferation (superantigenicity) and immunoreactivity. In opposite, pressurization at 20 °C did not change significantly SEA superantigenicity and immunoreactivity, indicating some toxin baro-resistance. Exposure of SEA to 8 M urea at atmospheric pressure or at 600 MPa and 20 °C, also led to a marked increase of superantigenicity (but not of immunoreactivity). In contrast, exposure of SEA to sodium-dodecylsulfate (30 mM) led to an increase of immunoreactivity with some effect on superantigenicity after pressurization at 45 °C only. High pressure up to 600 MPa induced spectral changes which at 20 °C were fully reversible upon decompression. At 45 °C, however, a sharp break of the centre of spectral mass mainly due to tryptophan residues was observed at 300 MPa, and irreversible spectral changes mainly related to tyrosine residues subsisted after pressure release, indicating a marked protein conformational transition. Urea 8 M further increased SEA structural changes at 600 MPa and 20 °C. These results indicate that SEA, under a combination of high pressure and mild temperature, as well as in the presence of urea, partly unfolds to a structure of strongly increased T-cell proliferative ability.  相似文献   
1000.
Lactococcus lactis is a Gram-positive bacterium used extensively by the dairy industry for the manufacture of fermented milk products. The double-stranded DNA bacteriophage p2 infects specific L. lactis strains using a receptor-binding protein (RBP) located at the tip of its noncontractile tail. We have solved the crystal structure of phage p2 RBP, a homotrimeric protein composed of three domains: the shoulders, a beta-sandwich attached to the phage; the neck, an interlaced beta-prism; and the receptor-recognition head, a seven-stranded beta-barrel. We used the complex of RBP with a neutralizing llama VHH domain to identify the receptor-binding site. Structural similarity between the recognition-head domain of phage p2 and those of adenoviruses and reoviruses, which invade mammalian cells, suggests that these viruses, despite evolutionary distant targets, lack of sequence similarity and the different chemical nature of their genomes (DNA versus RNA), might have a common ancestral gene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号