首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   280篇
  免费   21篇
  2020年   3篇
  2019年   3篇
  2017年   3篇
  2016年   7篇
  2015年   9篇
  2014年   15篇
  2013年   11篇
  2012年   15篇
  2011年   11篇
  2010年   7篇
  2009年   8篇
  2008年   8篇
  2007年   6篇
  2006年   5篇
  2005年   6篇
  2004年   8篇
  2003年   8篇
  2002年   8篇
  2001年   15篇
  2000年   9篇
  1999年   4篇
  1998年   5篇
  1997年   4篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1991年   8篇
  1990年   7篇
  1989年   7篇
  1988年   6篇
  1987年   5篇
  1986年   5篇
  1985年   4篇
  1984年   4篇
  1983年   5篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1975年   3篇
  1974年   2篇
  1973年   4篇
  1971年   2篇
  1966年   2篇
  1935年   2篇
  1932年   2篇
  1923年   4篇
  1920年   2篇
  1887年   3篇
排序方式: 共有301条查询结果,搜索用时 46 毫秒
41.
Recent studies indicate that c-Cbl and its oncogenic variants can modulate the activity of protein tyrosine kinases. This finding is supported by studies showing that c-Cbl interacts directly with a negative regulatory tyrosine in ZAP-70, and that the levels of tyrosine-phosphorylated ZAP-70 and numerous other proteins are increased in TCR-stimulated thymocytes from c-Cbl-deficient mice. Here, we demonstrate that this enhanced phosphorylation of ZAP-70 and that of two substrates, LAT and SLP-76, is not due to altered protein levels but is the consequence of two separate events. First, we find increased expression of tyrosine-phosphorylated TCRzeta chain in c-Cbl-deficient thymocytes, which results in a higher level of zeta-chain-associated ZAP-70 that is initially accessible for activation. Thus, more ZAP-70 is activated and more of its substrates (LAT and SLP-76) become tyrosine-phosphorylated after TCR stimulation. However, an additional mechanism of ZAP-70 regulation is evident at a later time poststimulation. At this time, ZAP-70 from both normal and c-Cbl-/- thymocytes becomes hyperphosphorylated; however, only in normal thymocytes does this correlate with ZAP-70 down-regulation and a diminished ability to phosphorylate LAT and SLP-76. In contrast, c-Cbl-deficient thymocytes display altered phosphorylation kinetics, for which LAT phosphorylation is increased and SLP-76 phosphorylation is sustained. Thus, the ability to down-regulate the phosphorylation of two ZAP-70 substrates is impaired in c-Cbl-/- thymocytes. These findings provide evidence that c-Cbl is involved in the negative regulation of the phosphorylation of LAT and SLP-76 by ZAP-70.  相似文献   
42.
43.
The c-Cbl protooncogene is a negative regulator for several receptor tyrosine kinases (RTKs) through its ability to promote their polyubiquitination. Hence, uncoupling c-Cbl from RTKs may lead to their deregulation. In testing this, we show that c-Cbl promotes ubiquitination of the Met RTK. This requires the c-Cbl tyrosine kinase binding (TKB) domain and a juxtamembrane tyrosine residue on Met. This tyrosine provides a direct binding site for the c-Cbl TKB domain, and is absent in the rearranged oncogenic Tpr-Met variant. A Met receptor, where the juxtamembrane tyrosine is replaced by phenylalanine, is not ubiquitinated and has transforming activity in fibroblast and epithelial cells. We propose the uncoupling of c-Cbl from RTKs as a mechanism contributing to their oncogenic activation.  相似文献   
44.
To quantify the contribution of endolithic phototrophs to primary production of dead carbonate substrates, experimental blocks of cleaned Porites lobata Dana skeleton were placed at three different sites in Kaneohe Bay, Hawaii: inshore, lagoonal, and oceanic. After 6 months of exposure, experimental blocks were colonized by communities characteristic of their estuarine (inshore, lagoonal) and oceanic (ocean) environments. Blocks were sub-sampled; net photosynthesis (NP) and chl a concentrations of the whole blocks (epi- and endoliths) and scrapped blocks (only endoliths) were quantified. Green turf algae colonized predominantly inshore and lagoonal blocks, while encrusting corallines were the dominant epiliths colonizing oceanic blocks. Four main species of endolithic phototrophs were identified in all blocks: Mastigocoleus testarum Lagerheim, Plectonema terebrans Bornet and Flahault (cyanobacteria), Phaeophila dendroides Crouan and Crouan, and Ostreobium quekettii Bornet and Flahault (Chlorophytes). While epiliths were very different between sites, NP rates and chl a concentration of endoliths did not vary significantly and were positively correlated (191±25 mmol C·m−2·day−1 and 590±150 mg chl a·m−2 of reef, respectively). Assimilation numbers for whole communities, including both epilithic and endolithic communities, were similar to those measured for endolithic communities alone (average of 0.3 g C·g chl a·h−1). Under experimental conditions, the contribution of endolithic phototrophs to community NP rates of blocks ranged from 56% to 81%, and under natural conditions, we estimated that this contribution ranged between 32% and 46%. Thus, we showed that the endolithic phototrophs are one of the major primary producers in dead coral substrates in a wide range of coral reef environments.  相似文献   
45.
46.
The interaction of κ-carrageenan with locust bean gum and dextran has been studied by rheology, differential scanning calorimetry (DSC), and electron spin resonance spectroscopy (ESR). Rheological measurements show that the carrageenan gel characteristics are greatly enhanced in the presence of locust bean gum but not in the presence of dextran. Carrageenan/locust bean gum mixtures show two peaks in the dsc cooling curves. The higher temperature peak corresponds to the temperature of gelation and its intensity increases at the expense of the lower temperature peak as the proportion of locust bean gum in the mixture increases. Furthermore, the DSC heating curves show enhanced broadening when locust bean gum is present, indicating increased aggregation. These results are taken as evidence of carrageenan/locust bean gum association. The gelation process has also been followed by ESR using spin-labeled carrageenan. On cooling carrageenan solutions, an immobile component appears in the ESR spectra signifying a loss of segmental mobility consistent with chain stiffening due to the coil → helix conformational transition and helix aggregation. For carrageenan/locust bean gum mixtures, carrageenan ordering occurs at temperatures corresponding to the higher temperature DSC setting peak and the temperature of gelation. Similar studies using spin-labeled locust bean gum show that its mobility remains virtually unaffected during the gelation process. It is evident, therefore, that carrageenan and locust bean gum interact only weakly. It is proposed that at low carrageenan concentrations the gel network consists of carrageenan helices cross-linked by locust bean gum chains. At high carrageenan concentrations the network is enhanced by the additional self-aggregation of the “excess” carrageenan molecules. For carrageenan/dextran mixtures, only one peak is observed in the dsc cooling curves. The onset of gelation shifts to higher temperatures only at very high (20%) dextran concentrations and this is attributed to volume exclusion effects. Furthermore, there is no enhanced broadening of the peaks in the DSC heating curves as for the carrageenan/locust bean gum systems. It is therefore concluded that carrageenan/dextran association does not occur. The difference in behavior between locust bean gum and dextran is attributed to the greater flexibility of the dextran chains. © 1996 John Wiley & Sons, Inc.  相似文献   
47.

Background

For mechanically ventilated patients with acute respiratory distress syndrome (ARDS), suboptimal PEEP levels can cause ventilator induced lung injury (VILI). In particular, high PEEP and high peak inspiratory pressures (PIP) can cause over distension of alveoli that is associated with VILI. However, PEEP must also be sufficient to maintain recruitment in ARDS lungs. A lung model that accurately and precisely predicts the outcome of an increase in PEEP may allow dangerous high PIP to be avoided, and reduce the incidence of VILI.

Methods and results

Sixteen pressure-flow data sets were collected from nine mechanically ventilated ARDs patients that underwent one or more recruitment manoeuvres. A nonlinear autoregressive (NARX) model was identified on one or more adjacent PEEP steps, and extrapolated to predict PIP at 2, 4, and 6 cmH2O PEEP horizons. The analysis considered whether the predicted and measured PIP exceeded a threshold of 40 cmH2O. A direct comparison of the method was made using the first order model of pulmonary mechanics (FOM(I)). Additionally, a further, more clinically appropriate method for the FOM was tested, in which the FOM was trained on a single PEEP prior to prediction (FOM(II)). The NARX model exhibited very high sensitivity (> 0.96) in all cases, and a high specificity (> 0.88). While both FOM methods had a high specificity (> 0.96), the sensitivity was much lower, with a mean of 0.68 for FOM(I), and 0.82 for FOM(II).

Conclusions

Clinically, false negatives are more harmful than false positives, as a high PIP may result in distension and VILI. Thus, the NARX model may be more effective than the FOM in allowing clinicians to reduce the risk of applying a PEEP that results in dangerously high airway pressures.
  相似文献   
48.
Lake morphometry and water chemistry were analyzed as predictors of brook trout and total salmonid biomass (brook trout, Atlantic salmon and Arctic char) in water bodies of Newfoundland. Lake morphometric variables included surface area, depth, perimeter and catchment area while water chemistry variables included conductivity/TDS and total Phosphorus. The broadly used Morpho-Edaphic Index was also assessed. Fish biomass/ha varied by an order of magnitude in the study lakes, despite similar water chemistry. Interactive stepwise multiple regression analysis suggested that Basin Permanence Index best explains brook trout biomass while surface area best explains the variance of total salmonid biomass in the relatively small, unproductive water bodies of Insular Newfoundland. In contrast, the Morphoedaphic Index performed poorly. The results suggest that biomass relationships with easily measured habitat variables such as surface area provide useful information, especially in management of water bodies under similar climate and nutrient regimes.  相似文献   
49.
E3 ubiquitin ligases have been placed among the essential molecules involved in the regulation of T cell functions and T cell tolerance. However, it has never been experimentally proven in vivo whether these functions indeed depend on the catalytic E3 ligase activity. The Casitas B-cell lymphoma (Cbl) family protein Cbl-b was the first E3 ubiquitin ligase directly implicated in the activation and tolerance of the peripheral T cell. In this study, we report that selective genetic inactivation of Cbl-b E3 ligase activity phenocopies the T cell responses observed when total Cbl-b is ablated, resulting in T cell hyperactivation, spontaneous autoimmunity, and impaired induction of T cell anergy in vivo. Moreover, mice carrying a Cbl-b E3 ligase-defective mutation spontaneously reject tumor cells that express human papilloma virus Ags. These data demonstrate for the first time, to our knowledge, that the catalytic function of an E3 ligase, Cbl-b, is essential for negative regulation of T cells in vivo. Thus, modulation of the E3 ligase activity of Cbl-b might be a novel modality to control T cell immunity in vaccination, cancer biology, or autoimmunity.  相似文献   
50.
Experimental studies have shown that coral calcification rates are dependent on light, nutrients, food availability, temperature, and seawater aragonite saturation (Ω arag), but the relative importance of each parameter in natural settings remains uncertain. In this study, we applied Calcein fluorescent dyes as time indicators within the skeleton of coral colonies (n = 3) of Porites astreoides and Diploria strigosa at three study sites distributed across the northern Bermuda coral reef platform. We evaluated the correlation between seasonal average growth rates based on coral density and extension rates with average temperature, light, and seawater Ω arag in an effort to decipher the relative importance of each parameter. The results show significant seasonal differences among coral calcification rates ranging from summer maximums of 243 ± 58 and 274 ± 57 mmol CaCO3 m?2 d?1 to winter minimums of 135 ± 39 and 101 ± 34 mmol CaCO3 m?2 d?1 for P. astreoides and D. strigosa, respectively. We also placed small coral colonies (n = 10) in transparent chambers and measured the instantaneous rate of calcification under light and dark treatments at the same study sites. The results showed that the skeletal growth of D. strigosa and P. astreoides, whether hourly or seasonal, was highly sensitive to Ω arag. We believe this high sensitivity, however, is misleading, due to covariance between light and Ω arag, with the former being the strongest driver of calcification variability. For the seasonal data, we assessed the impact that the observed seasonal differences in temperature (4.0 °C), light (5.1 mol photons m?2 d?1), and Ω arag (0.16 units) would have on coral growth rates based on established relationships derived from laboratory studies and found that they could account for approximately 44, 52, and 5 %, respectively, of the observed seasonal change of 81 ± 14 mmol CaCO3 m?2 d?1. Using short-term light and dark incubations, we show how the covariance of light and Ω arag can lead to the false conclusion that calcification is more sensitive to Ω arag than it really is.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号