首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   280篇
  免费   21篇
  2020年   3篇
  2019年   3篇
  2017年   3篇
  2016年   7篇
  2015年   9篇
  2014年   15篇
  2013年   11篇
  2012年   15篇
  2011年   11篇
  2010年   7篇
  2009年   8篇
  2008年   8篇
  2007年   6篇
  2006年   5篇
  2005年   6篇
  2004年   8篇
  2003年   8篇
  2002年   8篇
  2001年   15篇
  2000年   9篇
  1999年   4篇
  1998年   5篇
  1997年   4篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1991年   8篇
  1990年   7篇
  1989年   7篇
  1988年   6篇
  1987年   5篇
  1986年   5篇
  1985年   4篇
  1984年   4篇
  1983年   5篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1975年   3篇
  1974年   2篇
  1973年   4篇
  1971年   2篇
  1966年   2篇
  1935年   2篇
  1932年   2篇
  1923年   4篇
  1920年   2篇
  1887年   3篇
排序方式: 共有301条查询结果,搜索用时 31 毫秒
21.
De novo evolution of satellite DNA on the rye B chromosome   总被引:1,自引:0,他引:1  
The most distinctive region of the rye B chromosome is a subtelomeric domain that contains an exceptional concentration of B-chromosome-specific sequences. At metaphase this domain appears to be the physical counterpart of the subtelomeric heterochromatic regions present on standard rye chromosomes, but its conformation at interphase is less condensed. In this report we show that the two sequence families that have been previously found to make up the bulk of the domain have been assembled from fragments of a variety of sequence elements, giving rise to their ostensibly foreign origin. A single mechanism, probably based on synthesis-dependent strand annealing (SDSA), is responsible for their assembly. We provide evidence for sequential evolution of one family on the B chromosome itself. The extent of these rearrangements and the complexity of the higher-order organization of the B-chromosome-specific families indicate that instability is a property of the domain itself, rather than of any single sequence. Indirect evidence suggests that particular fragments may have been selected to confer different properties on the domain and that rearrangements are frequently selected for their effect on DNA structure. The current organization appears to represent a transient stage in the evolution of a conventional heterochromatic region from complex sequences.  相似文献   
22.
Retrotransposon evolution in diverse plant genomes   总被引:20,自引:0,他引:20  
Retrotransposon or retrotransposon-like sequences have been reported to be conserved components of cereal centromeres. Here we show that the published sequences are derived from a single conventional Ty3-gypsy family or a nonautonomous derivative. Both autonomous and nonautonomous elements are likely to have colonized Poaceae centromeres at the time of a common ancestor but have been maintained since by active retrotransposition. The retrotransposon family is also present at a lower copy number in the Arabidopsis genome, where it shows less pronounced localization. The history of the family in the two types of genome provides an interesting contrast between "boom and bust" and persistent evolutionary patterns.  相似文献   
23.
The bacteriocin AS-48 is a cationic peptide (7149 Da) having a broad antimicrobial spectrum, encoded by the 68 kb conjugative plasmid pMB2 from Enterococcus faecalis S-48. It is a unique peptide since it has a cyclic structure, which is achieved by the formation of a tail–head peptide bond after ribosomal synthesis (Gálvez et al., 1989; Martínez-Bueno et al., 1994; Samyn et al., 1994). Preliminary CD and calorimetric studies (data not shown) pointed towards a highly helical and very stable three dimensional structure.All the information gathered until now indicates that the target of AS-48 is the cytoplasmic membrane in which it opens channels or pores, leading to dissipation of the proton motive force and cell death, which in some cases is also followed by bacterial lysis (Gálvez et al., 1991). This peptide is a suitable tool for studying protein–membrane interactions, and it also offers promising perspectives for biotechnological applications.Knowledge of the 3D structure of AS-48 is a first step in the conduct of further structure–function studies. Here we report the complete1 H NMR assignment of its proton resonances together with the resulting secondary structure pattern as prerequisites for the determination of a high-resolution 3D solution structure.  相似文献   
24.
25.
The post‐translational modification of proteins with ubiquitin can take on many forms, including the decoration of substrates with polymeric ubiquitin chains. These chains are linked through one of the seven lysine residues in ubiquitin, with the potential to form a panoply of linkage combinations as the chain length increases. The ensuing structural diversity of modifications serves a variety of signaling functions. Still, some linkages are present at a much higher level than others in cellulo. Although ubiquitination is an enzyme‐catalyzed process, the large disparity of abundancies led us to the hypothesis that some linkages might be intrinsically faster to form than others, perhaps directing the course of enzyme evolution. Herein, we assess the kinetics of ubiquitin dimer formation in an enzyme‐free system by measuring the rate constants for thiol–disulfide interchange between appropriate ubiquitin variants. Remarkably, we find that the kinetically expedient linkages correlate with those that are most abundant in cellulo. As the abundant linkages also appear to function more broadly in cellulo, this correlation suggests that the more accessible chains were selected for global roles.  相似文献   
26.
Overcoming de novo and acquired resistance to anticancer drugs that target signaling networks is a formidable challenge for drug design and effective cancer therapy. Understanding the mechanisms by which this resistance arises may offer a route to addressing the insensitivity of signaling networks to drug intervention and restore the efficacy of anticancer therapy. Extending our recent work identifying PTEN as a key regulator of Herceptin sensitivity, we present an integrated theoretical and experimental approach to study the compensatory mechanisms within the PI3K/PTEN/AKT signaling network that afford resistance to receptor tyrosine kinase (RTK) inhibition by anti-HER2 monoclonal antibodies. In a computational model representing the dynamics of the signaling network, we define a single control parameter that encapsulates the balance of activities of the enzymes involved in the PI3K/PTEN/AKT cycle. By varying this control parameter we are able to demonstrate both distinct dynamic regimes of behavior of the signaling network and the transitions between those regimes. We demonstrate resistance, sensitivity, and suppression of RTK signals by the signaling network. Through model analysis we link the sensitivity-to-resistance transition to specific compensatory mechanisms within the signaling network. We study this transition in detail theoretically by variation of activities of PTEN, PI3K, AKT enzymes, and use the results to inform experiments that perturb the signaling network using combinatorial inhibition of RTK, PTEN, and PI3K enzymes in human ovarian carcinoma cell lines. We find good alignment between theoretical predictions and experimental results. We discuss the application of the results to the challenges of hypersensitivity of the signaling network to RTK signals, suppression of drug resistance, and efficacy of drug combinations in anticancer therapy.  相似文献   
27.
We describe how we are furthering our understanding of meiosis in rye (Secale cereale L.) using a combination of cytogenetic and molecular biological approaches. Fluorescent in situ hybridisation, electron microscopy of synaptonemal complexes, sequencing of meiosis-specific genes, and the immunolocalisation of recombinogenic proteins are being combined to build up phenotypic "identikits" of wild type, asynaptic mutants sy1 and sy9, and desynaptic mutant sy10. From this information, we review the status of our current understanding of the genetic control of meiosis in rye, and consider strategies for determining more precisely the interrelationships between meiosis-specific genes and their products.  相似文献   
28.
Cbl-b, a member of the Cbl family of E3 ubiquitin ligases, plays an important role in the activation of lymphocytes. However, its function in platelets remains unknown. We show that Cbl-b is expressed in human platelets along with c-Cbl, but in contrast to c-Cbl, it is not tyrosine-phosphorylated upon glycoprotein VI (GPVI) stimulation. Cbl-b, unlike c-Cbl, is not required for Syk ubiquitylation downstream of GPVI activation. Phospholipase Cγ2 (PLCγ2) and Bruton''s tyrosine kinase (BTK) are constituently associated with Cbl-b. Cbl-b-deficient (Cbl-b−/−) platelets display an inhibition in the concentration-response curve for GPVI-specific agonist-induced aggregation, secretion, and Ca2+ mobilization. A parallel inhibition is found for activation of PLCγ2 and BTK. However, Syk activation is not affected by the absence of Cbl-b, indicating that Cbl-b acts downstream of Syk but upstream of BTK and PLCγ2. When Cbl-b−/− mice were tested in the ferric chloride thrombosis model, occlusion time was increased and clot stability was reduced compared with wild type controls. These data indicate that Cbl-b plays a positive modulatory role in GPVI-dependent platelet signaling, which translates to an important regulatory role in hemostasis and thrombosis in vivo.  相似文献   
29.
The first bacterial N-linked glycosylation system was discovered in Campylobacter jejuni, and the key enzyme involved in the coupling of glycan to asparagine residues within the acceptor sequon of the glycoprotein is the oligosaccharyltransferase PglB. Emerging genome sequence data have revealed that pglB orthologues are present in a subset of species from the Deltaproteobacteria and Epsilonproteobacteria, including three Helicobacter species: H. pullorum, H. canadensis, and H. winghamensis. In contrast to C. jejuni, in which a single pglB gene is located within a larger gene cluster encoding the enzymes required for the biosynthesis of the N-linked glycan, these Helicobacter species contain two unrelated pglB genes (pglB1 and pglB2), neither of which is located within a larger locus involved in protein glycosylation. In complementation experiments, the H. pullorum PglB1 protein, but not PglB2, was able to transfer C. jejuni N-linked glycan onto an acceptor protein in Escherichia coli. Analysis of the characterized C. jejuni N-glycosylation system with an in vitro oligosaccharyltransferase assay followed by matrix-assisted laser desorption ionization (MALDI) mass spectrometry demonstrated the utility of this approach, and when applied to H. pullorum, PglB1-dependent N glycosylation with a linear pentasaccharide was observed. This reaction required an acidic residue at the −2 position of the N-glycosylation sequon, as for C. jejuni. Attempted insertional knockout mutagenesis of the H. pullorum pglB2 gene was unsuccessful, suggesting that it is essential. These first data on N-linked glycosylation in a second bacterial species demonstrate the similarities to, and fundamental differences from, the well-studied C. jejuni system.Glycosylation is one of the most common protein modifications, and eukaryotes glycosylate many of their secreted proteins with asparagine or N-linked glycans. This process is thought to have diverse roles in protein folding, quality control, protein secretion, and sorting (13). Eukaryotic glycosylation takes place at the luminal side of the endoplasmic reticulum (ER) membrane, where a preassembled oligosaccharide is transferred from a lipid carrier to asparagine residues within an N-X-S/T consensus sequence, where X can be any amino acid except proline (19). The coupling of glycan to the protein takes place cotranslationally as nascent polypeptide chains cross the ER membrane via a translocon apparatus (5). This reaction involves a protein complex of at least eight subunits (49), with the STT3 protein (50, 52) apparently acting as the central enzyme in the process of N-linked protein glycosylation (29, 48). The STT3 protein consists of an amino terminus with multiple membrane-spanning domains and a carboxy-terminal region containing the highly conserved WWDYG amino acid sequence motif (15).The first prokaryotic glycoproteins were described for archaeal species over 30 years ago (26), and for some time it was thought that protein glycosylation was a eukaryotic and archaeal, but not a bacterial, trait. However, there are now many examples of protein glycosylation in species from the domain Bacteria. For example, general O-linked protein glycosylation systems in which functionally diverse sets of proteins are glycosylated via a single pathway have recently been identified in Neisseria and Bacteroides spp. (8, 21, 44). The most-well-characterized bacterial species with respect to protein glycosylation is the enteropathogen Campylobacter jejuni, which encodes an O-linked system that glycosylates the flagellin protein of the flagellar filament along with the first described bacterial N-linked glycosylation system (39).The C. jejuni N-linked glycosylation pathway is encoded by genes from a single protein glycosylation, or pgl, locus (38). The glycosylation reaction is thought to occur at the periplasmic face of the bacterial inner membrane mediated by the product of the STT3 orthologue pglB (46). The C. jejuni heptasaccharide glycan is assembled on a lipid carrier in the cytoplasm through the action of glycosyltransferases encoded by the pglA, pglC, pglH, pglJ, and pglI genes (11, 12, 24, 31). This lipid-linked oligosaccharide (LLO) is then “flipped” into the periplasm by the pglK gene product, or “flippase” (1), and transferred by PglB onto an asparagine residue within an extended D/E-X-N-X-S/T sequon (19). Many C. jejuni periplasmic and surface proteins of diverse function are N glycosylated (51), yet the function of glycosylation remains elusive. Unlike in eukaryotes, this process occurs posttranslationally, and the surface location of the sequon in folded proteins appears to be required for glycosylation (20).The C. jejuni pgl gene locus can be transferred into Escherichia coli, and the corresponding gene products will function to transfer the heptasaccharide onto asparagine residues of coexpressed C. jejuni glycoproteins as well as non-C. jejuni proteins containing the appropriately located acceptor sequon (19, 46). When alternative lipid-linked glycans are present, such as those involved in lipopolysaccharide biosynthesis, glycans with diverse structure can also be transferred onto proteins (7). Although there are limitations, particularly with regard to the apparent structural requirement for an acetamido group on the C-2 carbon of the reducing end sugar (7, 47), this is still a significant advance toward tractable in vivo systems for glycoconjugate synthesis. The identification and characterization of further bacterial PglB proteins with potentially diverse properties would considerably expand the utility of such systems. Data from genome sequencing indicate that pglB orthologues are found in species closely related to C. jejuni, such as Campylobacter coli, Campylobacter lari, and Campylobacter upsaliensis (40), as well as in the more distantly related species Wolinella succinogenes (2). These species are members of the phylogenetic grouping known as the epsilon subdivision of the Proteobacteria, or Epsilonproteobacteria, consisting of the well-established genera Campylobacter, Helicobacter, Arcobacter, and Wolinella, which are often associated with human and animal hosts, as well as a number of newly recognized groupings of environmental bacteria often found in sulfidic environments (3). However, not all species of Epsilonproteobacteria contain pglB orthologues, and until recently, all characterized Helicobacter species lacked pglB genes.Given the considerable interest in exploiting bacterial protein glycosylation, especially the C. jejuni N-linked glycosylation system, for generating glycoconjugates of biotechnological and therapeutic potential, the functional characterization of newly discovered pglB orthologues is a priority. In this report we describe the application of an in vitro oligosaccharyltransferase assay to investigate N-linked glycosylation initially in C. jejuni, where the utility of this approach was demonstrated, and then in Helicobacter pullorum, demonstrating that one of the two H. pullorum PglB enzymes is responsible for N-linked protein glycosylation with a pentasaccharide glycan.  相似文献   
30.

Background  

A modification of a standard method of fluorescence in situ hybridisation (FISH) is described, by which a combination of several substrates and probes on single microscope slides enables more accurate comparisons of the distribution and abundance of chromosomal sequences and improves the relatively low throughput of standard FISH methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号