全文获取类型
收费全文 | 3372篇 |
免费 | 301篇 |
国内免费 | 86篇 |
专业分类
3759篇 |
出版年
2022年 | 51篇 |
2021年 | 72篇 |
2020年 | 52篇 |
2019年 | 58篇 |
2018年 | 41篇 |
2017年 | 52篇 |
2016年 | 57篇 |
2015年 | 135篇 |
2014年 | 156篇 |
2013年 | 164篇 |
2012年 | 233篇 |
2011年 | 212篇 |
2010年 | 136篇 |
2009年 | 114篇 |
2008年 | 150篇 |
2007年 | 173篇 |
2006年 | 135篇 |
2005年 | 134篇 |
2004年 | 110篇 |
2003年 | 79篇 |
2002年 | 82篇 |
2001年 | 89篇 |
2000年 | 88篇 |
1999年 | 63篇 |
1998年 | 54篇 |
1997年 | 27篇 |
1996年 | 23篇 |
1995年 | 25篇 |
1994年 | 38篇 |
1993年 | 28篇 |
1992年 | 42篇 |
1991年 | 48篇 |
1990年 | 57篇 |
1989年 | 61篇 |
1988年 | 46篇 |
1987年 | 63篇 |
1986年 | 47篇 |
1985年 | 35篇 |
1984年 | 39篇 |
1983年 | 22篇 |
1982年 | 28篇 |
1981年 | 19篇 |
1979年 | 27篇 |
1978年 | 23篇 |
1977年 | 20篇 |
1976年 | 30篇 |
1975年 | 18篇 |
1974年 | 21篇 |
1973年 | 17篇 |
1972年 | 26篇 |
排序方式: 共有3759条查询结果,搜索用时 15 毫秒
151.
Bernat Elvira Sabina Honisch Ahmad Almilaji Tatsiana PakladokGuilai Liu Ekaterina ShumilinaIoana Alesutan Wenting YangCarlos Munoz Florian Lang 《生物化学与生物物理学报:生物膜》2013
The Na+-coupled glucose transporter SGLT1 (SLC5A1) accomplishes concentrative cellular glucose uptake even at low extracellular glucose concentrations. The carrier is expressed in renal proximal tubules, small intestine and a variety of nonpolarized cells including several tumor cells. The present study explored whether SGLT1 activity is regulated by caveolin-1, which is known to regulate the insertion of several ion channels and carriers in the cell membrane. To this end, SGLT1 was expressed in Xenopus oocytes with or without additional expression of caveolin-1 and electrogenic glucose transport determined by dual electrode voltage clamp experiments. In SGLT1-expressing oocytes, but not in oocytes injected with water or caveolin-1 alone, the addition of glucose to the extracellular bath generated an inward current (Ig), which was increased following coexpression of caveolin-1. Kinetic analysis revealed that caveolin-1 increased maximal Ig without significantly modifying the glucose concentration required to trigger half maximal Ig (KM). According to chemiluminescence and confocal microscopy, caveolin-1 increased SGLT1 protein abundance in the cell membrane. Inhibition of SGLT1 insertion by brefeldin A (5 μM) resulted in a decline of Ig, which was similar in the absence and presence of caveolin-1. In conclusion, caveolin-1 up-regulates SGLT1 activity by increasing carrier protein abundance in the cell membrane, an effect presumably due to stimulation of carrier protein insertion into the cell membrane. 相似文献
152.
Caterina Holz Christiane Alexander Christina Balcke Margret Moré Annegret Auinger Maren Bauer Lauren Junker Jörg Grünwald Christine Lang Markus Pompejus 《Probiotics and antimicrobial proteins》2013,5(4):259-263
Reducing the burden of pathogenic mutans streptococci is a goal of oral health. Lactobacillus paracasei DSMZ16671, even after heat-killing, specifically co-aggregates mutans streptococci in vitro and retains this activity in human saliva. In rats, it reduces mutans streptococcal colonization of teeth and caries scores. This pilot study sought to assess the potential of heat-killed L. paracasei DSMZ16671 (pro-t-action®) to reduce levels of salivary mutans streptococci in humans, using sugar-free candies as a delivery vehicle. A randomized, placebo-controlled, double-blind in vivo study of three groups examined the short-term effect of sugar-free candies containing 0 (placebo), 1, or 2 mg/candy piece of heat-killed L. paracasei DSMZ16671 on the levels of salivary mutans streptococci determined before and after consumption of the candies. The candies were consumed 4 times during 1.5 consecutive days. Compared to the placebo group, the test groups’ saliva had significantly reduced mutans streptococci as an immediate effect. These results suggest the use of heat-killed L. paracasei DSMZ16671 in suckable candies as a method to reduce mutans streptococci in the mouth and, thereby, caries risk. We think this a new concept and strategy for caries prevention and management. 相似文献
153.
Lucas R Lopes Vitor AR Miranda Rodrigo A Goes Gabriel GA Souza Giuliana R Souza Jessica CS Rocha Victor RA Cossich Jamila A Perini 《Biology of sport / Institute of Sport》2021,38(4):703
The COVID-19 pandemic has presented significant challenges and implications for the sports community. Thus, this study aimed to describe the prevalence of COVID-19 in Brazilian athletes and identify the epidemiological, clinical, athletic, life and health factors associated with the disease in these individuals. A cross-sectional study was performed involving 414 athletes from 22 different sports using an online questionnaire from August to November 2020. The association between the athletes’ characteristics and COVID-19 was evaluated using a logistic regression model. The prevalence of COVID-19 was 8.5%, although only 40% of athletes reported having been tested. Being under 27 years of age (3-fold), having children (~5-fold), having a teammate test positive for COVID-19 (2.5-fold), and smoking (14-fold) were associated with a possible higher risk of disease. Almost 20% of athletes self-reported musculoskeletal injuries during the period of the pandemic that was studied. Athletes with a university education (P = 0.02), a profession other than sports (P < 0.001), those from a low-income family (P = 0.01), and public health system users (P = 0.04) were significantly less frequently tested for COVID-19, whereas international competitors, athletes who received a wage, and athletes who had a teammate who tested positive for COVID-19 were 2-, 3-, and 15-fold more likely to be tested for COVID-19, respectively. Approximately 26% of the athletes who tested negative or were untested reported more than three characteristic COVID-19 symptoms, and 11% of athletes who tested positive for COVID-19 were asymptomatic. The identification of modifiable (have children, smoking, and teammates positively tested) and non-modifiable (age under 27 years) factors related to COVID-19 in athletes can contribute to implementing surveillance programmes to decrease the incidence of COVID-19 in athletes and its negative impacts in sports. 相似文献
154.
Molecular requirements for the regulation of the renal outer medullary K(+) channel ROMK1 by the serum- and glucocorticoid-inducible kinase SGK1 总被引:3,自引:0,他引:3
Palmada M Embark HM Yun C Böhmer C Lang F 《Biochemical and biophysical research communications》2003,311(3):629-634
The serum- and glucocorticoid- inducible kinase SGK1 stimulates the renal outer medullary K(+) channel ROMK1 in the presence of the Na(+)/H(+) exchanger regulating factor NHERF2. SGK1/NHERF2 are effective through enhancement of ROMK1 abundance within the cell membrane. The present study aims to define the molecular requirements for the interaction of ROMK1 with SGK1/NHERF2. Pull down assays reveal that SGK1 interacts with NHERF2 through the second PDZ domain of NHERF2. According to chemiluminescence and electrophysiology, deletion of the second PDZ domain of NHERF2 or the putative PDZ binding motif on ROMK1 abrogates the stimulating effect of SGK1 on ROMK1 protein abundance in the plasma membrane and K(+) current. 相似文献
155.
Chunlei Wang Xiaomei Dong Dan Jin Yusheng Zhao Shaojun Xie Xiaojie Li Xinjian He Zhaobo Lang Jinsheng Lai Jian-Kang Zhu Zhizhong Gong 《Plant physiology》2015,167(3):905-914
Although researchers have established that DNA methylation and active demethylation are dynamically regulated in plant cells, the molecular mechanism for the regulation of active DNA demethylation is not well understood. By using an Arabidopsis (Arabidopsis thaliana) line expressing the Promoter RESPONSIVE TO DEHYDRATION 29A:LUCIFERASE (ProRD29A:LUC) and Promoter cauliflower mosaic virus 35S:NEOMYCIN PHOSPHOTRANSFERASE II (Pro35S:NPTII) transgenes, we isolated an mbd7 (for methyl-CpG-binding domain protein7) mutant. The mbd7 mutation causes an inactivation of the Pro35S:NPTII transgene but does not affect the expression of the ProRD29A:LUC transgene. The silencing of the Pro35S:NPTII reporter gene is associated with DNA hypermethylation of the reporter gene. MBD7 interacts physically with REPRESSOR OF SILENCING5/INCREASED DNA METHYLATION2, a protein in the small heat shock protein family. MBD7 prefers to target the genomic loci with high densities of DNA methylation around chromocenters. The Gypsy-type long terminal repeat retrotransposons mainly distributed around chromocenters are most affected by mbd7 in all transposons. Our results suggest that MBD7 is required for active DNA demethylation and antisilencing of the genomic loci with high densities of DNA methylation in Arabidopsis.DNA methylation is an important epigenetic marker for genome stability and the regulation of gene expression in both plants and animals (Law and Jacobsen, 2010; He et al., 2011). In plants, the molecular mechanisms for DNA methylation have been well characterized by the use of powerful genetic screening systems (Bartee et al., 2001; Lindroth et al., 2001; Matzke et al., 2004; He et al., 2009). A transgene or an endogenous gene may be silenced because of DNA hypermethylation in the promoter region. Screenings for mutants with release of the silenced marker genes have identified many components that are involved in RNA-directed DNA methylation (RdDM) and in maintaining DNA methylation (Matzke and Birchler, 2005; Law and Jacobsen, 2009; He et al., 2011; Bender, 2012). DNA methylation is catalyzed by DNA methyltransferases including DNA METHYLTRANSFERASE1 (MET1) and CHROMOMETHYLASE3 (CMT3), which maintain symmetric CG and CHG methylation, respectively, during DNA replication, and DOMAINS REARRANGED METHYLASE2 (DRM2) and CMT2, which are required for establishing CHG and asymmetric CHH methylation during each cell cycle. DRM2 also catalyzes CG methylation (Law and Jacobsen, 2010; Haag and Pikaard, 2011; He et al., 2011; Zemach et al., 2013; Stroud et al., 2014). Twenty-four-nucleotide small RNAs produced through the RdDM pathway target genomic regions to guide the establishment of DNA methylation by DRM2 (Cao et al., 2003).DNA methylation can be actively removed by a subfamily of bifunctional DNA glycosylases/lyases including REPRESSOR OF SILENCING1 (ROS1; Gong et al., 2002) and its paralogs DEMETER and DEMETER-LIKE2/3 (Gehring et al., 2006; Ortega-Galisteo et al., 2008). DNA methylation can also be passively lost during DNA replication when DNA methylation cannot be maintained (Zhu, 2009). Promoter RESPONSIVE TO DEHYDRATION 29A:LUCIFERASE (ProRD29A:LUC) in the ProRD29A:LUC/Promoter cauliflower mosaic virus 35S:NEOMYCIN PHOSPHOTRANSFERASE II (Pro35S:NPTII) transgenic Arabidopsis (Arabidopsis thaliana) line has been used as a marker to identify ros1 and ros3 mutants in which both ProRD29A:LUC and Pro35S:NPTII are silenced (Gong et al., 2002; Zheng et al., 2008). ROS3 is an RNA-binding protein that facilitates the function of ROS1 in active DNA demethylation at certain genomic loci. Using Pro35S:NPTII as a selection marker for kanamycin-sensitive mutants and the 35S-SUC2 transgene or a chop PCR marker for assaying DNA methylation at the 3′ region of At1g26400 from transfer DNA (T-DNA) insertion mutants, researchers recently identified two genes involved in active DNA demethylation: ROS4/INCREASED DNA METHYLATION1 (IDM1) and ROS5/IDM2 (Li et al., 2012; Qian et al., 2012, 2014; Zhao et al., 2014). ROS4/IDM1 is a plant homeodomain-finger domain-containing histone acetyltransferase that catalyzes histone H3 lysine18 (H3K18) and lysine23 (H3K23) acetylation (Li et al., 2012; Qian et al., 2012). ROS5/IDM2 is a member of the small heat shock protein family that interacts physically with ROS4/IDM1 for the regulation of active DNA demethylation. Genetic analysis indicates that ROS1, ROS4/IDM1, and ROS5/IDM2 are in the same genetic pathway and that ROS4/IDM1 and ROS5/IDM2 may form a protein complex for the regulation of active DNA demethylation (Qian et al., 2014; Zhao et al., 2014).During the genetic screening for kanamycin-sensitive mutants using the ProRD29A:LUC/Pro35S:NPTII transgenic line in this study, we identified another mutant, mbd7, where the Pro35S:NPTII transgene is specifically silenced. MBD7 is a methyl-CpG-binding domain (MBD) protein containing three MBD motifs that bind in vitro to methylated symmetric CG sites. MBD7 localizes to all highly CpG-methylated chromocenters in vivo (Zemach and Grafi, 2003; Zemach et al., 2008). Recruitment of MBD7 to chromocenters is disrupted in decrease in DNA methylation1 (ddm1) and met1, two mutants with great reductions in DNA methylation, suggesting that DNA methylation is required for proper MBD7 localization (Zemach et al., 2005). In this study, we found that MBD7 interacts physically with ROS5/IDM2 and is required for the active DNA demethylation of certain genomic loci, especially for the Gypsy-type long terminal repeat (LTR) retrotransposons with high densities of DNA methylation around chromocenters in Arabidopsis. 相似文献
156.
Smits SL van den Brand JM de Lang A Leijten LM van Ijcken WF van Amerongen G Osterhaus AD Andeweg AC Haagmans BL 《Journal of virology》2011,85(9):4234-4245
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), caused by influenza A virus H5N1 and severe acute respiratory syndrome coronavirus (SARS-CoV), supposedly depend on activation of the oxidative-stress machinery that is coupled with innate immunity, resulting in a strong proinflammatory host response. Inflammatory cytokines, such as interleukin 1β (IL-1β), IL-8, and IL-6, play a major role in mediating and amplifying ALI/ARDS by stimulating chemotaxis and activation of neutrophils. To obtain further insight into the pathogenesis of SARS-CoV-associated ALI, we compared SARS-CoV infections in two different nonhuman primate species, cynomolgus macaques and African green monkeys. Viral titers in the upper and lower respiratory tract were not significantly different in SARS-CoV-infected macaques and African green monkeys. Inflammatory cytokines that play a major role in mediating and amplifying ALI/ARDS or have neutrophil chemoattractant activity, such as IL-6, IL-8, CXCL1, and CXCL2, were, however, induced only in macaques. In contrast, other proinflammatory cytokines and chemokines, including osteopontin and CCL3, were upregulated in the lungs of African green monkeys to a significantly greater extent than in macaques. Because African green monkeys developed more severe ALI than macaques, with hyaline membrane formation, some of these differentially expressed proinflammatory genes may be critically involved in development of the observed pathological changes. Induction of distinct proinflammatory genes after SARS-CoV infection in different nonhuman primate species needs to be taken into account when analyzing outcomes of intervention strategies in these species. 相似文献
157.
The purpose of this study was to investigate and compare the feasibility of rat sodium iodide symporter (rNIS) and human sodium iodide symporter (hNIS) as reporter genes for noninvasive monitoring of rat bone marrow mesenchymal stem cells (rBMSCs) transplanted into infarcted rat myocardium. rBMSCs were isolated from rat bone marrow. Adenovirus (Ad) was reconstructed to contain rNIS-enhanced green fluorescent protein (eGFP) or hNIS-eGFP. The transfection efficiency of Ad/eGFP/rNIS and Ad/eGFP/hNIS to rBMSCs was measured by real-time polymerase chain reaction, flow cytometry, Western blot, and immunofluorescence staining. The transfected rBMSCs were transplanted into infarcted rat myocardium followed by a single-photon emission computed tomography (SPECT) study with (99m)Tc-pertechnetate as the radiotracer and by autoradiography. The isolated rBMSCs were CD29, CD44, and CD90 positive and CD34, CD45, and CD11b negative. The expression of rNIS and hNIS in the transfected rBMSCs at both gene and protein levels was obviously higher than that without transfection. The myocardium of rats transplanted with transfected rBMSCs could be visualized by SPECT owing to the accumulation of (99m)Tc-pertechnetate in rBMSCs mediated by exogenous NIS genes. The accumulation of (99m)Tc-pertechnetate in myocardium mediated by rNIS was higher than that by hNIS, which was also confirmed by autoradiography. Both rNIS and hNIS are useful reporter genes to monitor BMSCs transplanted into infarcted myocardium in vivo with rNIS being superior to hNIS as the reporter gene. 相似文献
158.
Maddala R Chauhan BK Walker C Zheng Y Robinson ML Lang RA Rao PV 《Developmental biology》2011,360(1):30-43
Morphogenesis and shape of the ocular lens depend on epithelial cell elongation and differentiation into fiber cells, followed by the symmetric and compact organization of fiber cells within an enclosed extracellular matrix-enriched elastic capsule. The cellular mechanisms orchestrating these different events however, remain obscure. We investigated the role of the Rac1 GTPase in these processes by targeted deletion of expression using the conditional gene knockout (cKO) approach. Rac1 cKO mice were derived from two different Cre (Le-Cre and MLR-10) transgenic mice in which lens-specific Cre expression starts at embryonic day 8.75 and 10.5, respectively, in both the lens epithelium and fiber cells. The Le-Cre/Rac1 cKO mice exhibited an early-onset (E12.5) and severe lens phenotype compared to the MLR-10/Rac1 cKO (E15.5) mice. While the Le-Cre/Rac1 cKO lenses displayed delayed primary fiber cell elongation, lenses from both Rac1 cKO strains were characterized by abnormal shape, impaired secondary fiber cell migration, sutural defects and thinning of the posterior capsule which often led to rupture. Lens fiber cell N-cadherin/β-catenin/Rap1/Nectin-based cell–cell junction formation and WAVE-2/Abi-2/Nap1-regulated actin polymerization were impaired in the Rac1 deficient mice. Additionally, the Rac1 cKO lenses were characterized by a shortened epithelial sheet, reduced levels of extracellular matrix (ECM) proteins and increased apoptosis. Taken together, these data uncover the essential role of Rac1 GTPase activity in establishment and maintenance of lens shape, suture formation and capsule integrity, and in fiber cell migration, adhesion and survival, via regulation of actin cytoskeletal dynamics, cell adhesive interactions and ECM turnover. 相似文献
159.
Katrin Bomans Antje Lang Veronika Roedl Lisa Adolf Kyrillos Kyriosoglou Katharina Diepold Gabriele Eberl Michael M?lh?j Ulrike Strauss Christian Schmalz Rudolf Vogel Dietmar Reusch Harald Wegele Michael Wiedmann Patrick Bulau 《PloS one》2013,8(11)
Biotherapeutics are often produced in non-human host cells like Escherichia coli, yeast, and various mammalian cell lines. A major focus of any therapeutic protein purification process is to reduce host cell proteins to an acceptable low level. In this study, various E. coli host cell proteins were identified at different purifications steps by HPLC fractionation, SDS-PAGE analysis, and tryptic peptide mapping combined with online liquid chromatography mass spectrometry (LC-MS). However, no host cell proteins could be verified by direct LC-MS analysis of final drug substance material. In contrast, the application of affinity enrichment chromatography prior to comprehensive LC-MS was adequate to identify several low abundant host cell proteins at the final drug substance level. Bacterial alkaline phosphatase (BAP) was identified as being the most abundant host cell protein at several purification steps. Thus, we firstly established two different assays for enzymatic and immunological BAP monitoring using the cobas® technology. By using this strategy we were able to demonstrate an almost complete removal of BAP enzymatic activity by the established therapeutic protein purification process. In summary, the impact of fermentation, purification, and formulation conditions on host cell protein removal and biological activity can be conducted by monitoring process-specific host cell proteins in a GMP-compatible and high-throughput (> 1000 samples/day) manner. 相似文献
160.
Defects in protein modification precede developmental defects in l(3)c21RRW630, a temperature-sensitive Drosophila developmental mutant 总被引:1,自引:0,他引:1
The temperature-sensitive Drosophila developmental mutation, l(3)c21RRW630 (abbreviated RW630) disturbs oogenesis and has a maternal effect on embryogenesis. At restrictive temperature, RW630 alters post-translational modification of three abundant proteins. To examine the causal relationship between these biochemical defects and the developmental defects in RW630, a series of temperature-shift experiments was performed. It was found that defects in protein modification could be detected in RW630 ovaries after RW630 females had been exposed to restrictive temperature for 1 day. RW630 females treated in this fashion produce embryos which contain a low level of unmodified proteins. Nevertheless, these embryos hatch at a normal rate. Since these ovaries and these embryos are developmentally normal, but do show defects in protein modification, it is unlikely that the RW630 developmental defects cause the biochemical defects in RW630. It is more likely that accumulation of unmodified proteins after extended exposure to restrictive temperature produces the developmental defects in RW630. 相似文献