全文获取类型
收费全文 | 2245篇 |
免费 | 325篇 |
国内免费 | 1篇 |
专业分类
2571篇 |
出版年
2021年 | 24篇 |
2020年 | 21篇 |
2019年 | 21篇 |
2018年 | 21篇 |
2016年 | 42篇 |
2015年 | 51篇 |
2014年 | 61篇 |
2013年 | 74篇 |
2012年 | 112篇 |
2011年 | 85篇 |
2010年 | 61篇 |
2009年 | 50篇 |
2008年 | 94篇 |
2007年 | 91篇 |
2006年 | 86篇 |
2005年 | 85篇 |
2004年 | 87篇 |
2003年 | 92篇 |
2002年 | 70篇 |
2001年 | 90篇 |
2000年 | 68篇 |
1999年 | 72篇 |
1998年 | 34篇 |
1997年 | 35篇 |
1996年 | 31篇 |
1995年 | 23篇 |
1994年 | 23篇 |
1992年 | 51篇 |
1991年 | 46篇 |
1990年 | 50篇 |
1989年 | 51篇 |
1988年 | 53篇 |
1987年 | 40篇 |
1986年 | 37篇 |
1985年 | 46篇 |
1984年 | 25篇 |
1983年 | 32篇 |
1982年 | 27篇 |
1981年 | 26篇 |
1980年 | 35篇 |
1979年 | 35篇 |
1978年 | 21篇 |
1977年 | 24篇 |
1976年 | 28篇 |
1974年 | 22篇 |
1973年 | 17篇 |
1972年 | 27篇 |
1971年 | 30篇 |
1970年 | 24篇 |
1969年 | 25篇 |
排序方式: 共有2571条查询结果,搜索用时 17 毫秒
51.
Britt RD Campbell KA Peloquin JM Gilchrist ML Aznar CP Dicus MM Robblee J Messinger J 《Biochimica et biophysica acta》2004,1655(1-3):158-171
The pulsed electron paramagnetic resonance (EPR) methods of electron spin echo envelope modulation (ESEEM) and electron spin echo-electron nuclear double resonance (ESE-ENDOR) are used to investigate the structure of the Photosystem II oxygen-evolving complex (OEC), including the paramagnetic manganese cluster and its immediate surroundings. Recent unpublished results from the pulsed EPR laboratory at UC-Davis are discussed, along with aspects of recent publications, with a focus on substrate and cofactor interactions. New data on the proximity of exchangeable deuterons around the Mn cluster poised in the S(0)-state are presented and interpreted. These pulsed EPR results are used in an evaluation of several recently proposed mechanisms for PSII water oxidation. We strongly favor mechanistic models where the substrate waters bind within the OEC early in the S-state cycle. Models in which the O-O bond is formed by a nucleophilic attack by a Ca(2+)-bound water on a strong S(4)-state electrophile provide a good match to the pulsed EPR data. 相似文献
52.
K L Borden C J Bauer T A Frenkiel P Beckmann A N Lane 《European journal of biochemistry》1992,204(1):137-146
Sequence-specific 15N and 1H assignments for the trp holorepressor from Escherichia coli are reported. The trp repressor consists of two identical 107-residue subunits which are highly helical in the crystal state [Schevitz, R., Otwinowski, Z., Joachimiak, A., Lawson, C. L. & Sigler, P. B. (1985) Nature 317, 782-786]. The high helical content and the relatively large size of the protein (Mr = 25,000) make it difficult to assign even the main-chain resonances by conventional homonuclear two-dimensional NMR methods. However, we have now assigned the main-chain resonances of 94% of the residues by using three-dimensional 15N/1H heteronuclear experiments on a sample of protein uniformly labelled with 15N. The additional resolution obtained by spreading out the signals into three dimensions proved indispensable in making these assignments. In particular, we have been able to resolve signals from residues in the N-terminal region of the A helix for the first time in solution. The observed NOE results confirm that the repressor is highly helical in solution, and contains no extended chain conformations. 相似文献
53.
Human Papillomavirus Type 11 Recombinant L1 Capsomeres Induce Virus-Neutralizing Antibodies 总被引:5,自引:3,他引:5 下载免费PDF全文
Robert C. Rose Wendy I. White Maolin Li JoAnn A. Suzich Christopher Lane Robert L. Garcea 《Journal of virology》1998,72(7):6151-6154
The human papillomavirus type 11 (HPV-11) L1 major capsid protein can be trypsinized to generate recombinant capsomeres that retain HPV genotype-restricted capsid antigenicity (M. Li, T. P. Cripe, P. A. Estes, M. K. Lyon, R. C. Rose, and R. L. Garcea, J. Virol. 71:2988–2995, 1997). In the present study, HPV-11 virion-neutralizing monoclonal antibodies H11.F1 and H11.H3, previously characterized as recognizing two distinct HPV-11 capsid-neutralizing antigenic domains (S. W. Ludmerer, D. Benincasa, and G. E. Mark III, J. Virol. 70:4791–4794, 1996), were each found to be highly immunoreactive with trypsin-generated capsomeres in an enzyme-linked immunosorbent assay (ELISA). Capsomeres were used to generate high-titer polyclonal immune sera that demonstrated HPV genotype-restricted reactivity by ELISA. The capsomere antisera were then tested in an in vitro infectivity assay and found to neutralize HPV-11 virions. In this assay, HPV-11 capsomere polyclonal antisera exhibited neutralization titers (10−5 to 10−6) comparable to those obtained with a virion-neutralizing antiserum raised previously against intact HPV-11 VLPs (R. C. Rose, R. C. Reichman, and W. Bonnez, J. Gen. Virol. 75:2075–2079, 1994). These results indicate that highly immunogenic, genotype-restricted HPV capsid-neutralizing antigenic domains are contained entirely within capsomeres. Thus, capsomeres may be viable vaccine candidates for the prevention of HPV disease. 相似文献
54.
An assessment of the microbiological safety of fresh whole‐leaf herbs from retail premises in the United Kingdom with a focus on Salmonella spp. 下载免费PDF全文
55.
Alaa Abdul-Ridha Laura López Peter Keov David M. Thal Shailesh N. Mistry Patrick M. Sexton J. Robert Lane Meritxell Canals Arthur Christopoulos 《The Journal of biological chemistry》2014,289(9):6067-6079
Benzylquinolone carboxylic acid (BQCA) is an unprecedented example of a selective positive allosteric modulator of acetylcholine at the M1 muscarinic acetylcholine receptor (mAChR). To probe the structural basis underlying its selectivity, we utilized site-directed mutagenesis, analytical modeling, and molecular dynamics to delineate regions of the M1 mAChR that govern modulator binding and transmission of cooperativity. We identified Tyr-852.64 in transmembrane domain 2 (TMII), Tyr-179 and Phe-182 in the second extracellular loop (ECL2), and Glu-3977.32 and Trp-4007.35 in TMVII as residues that contribute to the BQCA binding pocket at the M1 mAChR, as well as to the transmission of cooperativity with the orthosteric agonist carbachol. As such, the BQCA binding pocket partially overlaps with the previously described “common” allosteric site in the extracellular vestibule of the M1 mAChR, suggesting that its high subtype selectivity derives from either additional contacts outside this region or through a subtype-specific cooperativity mechanism. Mutation of amino acid residues that form the orthosteric binding pocket caused a loss of carbachol response that could be rescued by BQCA. Two of these residues (Leu-1023.29 and Asp-1053.32) were also identified as indirect contributors to the binding affinity of the modulator. This new insight into the structural basis of binding and function of BQCA can guide the design of new allosteric ligands with tailored pharmacological properties. 相似文献
56.
57.
Riccardo Baroncelli Antonio Zapparata Sabrina Sarrocco Serenella A. Sukno Charles R. Lane Michael R. Thon Giovanni Vannacci Eric Holub Surapareddy Sreenivasaprasad 《PloS one》2015,10(6)
Fragaria × ananassa (common name: strawberry) is a globally cultivated hybrid species belonging to Rosaceae family. Colletotrichum acutatum sensu lato (s.l.) is considered to be the second most economically important pathogen worldwide affecting strawberries. A collection of 148 Colletotrichum spp. isolates including 67 C. acutatum s.l. isolates associated with the phytosanitary history of UK strawberry production were used to characterize multi-locus genetic variation of this pathogen in the UK, relative to additional reference isolates that represent a worldwide sampling of the diversity of the fungus. The evidence indicates that three different species C. nymphaeae, C. godetiae and C. fioriniae are associated with strawberry production in the UK, which correspond to previously designated genetic groups A2, A4 and A3, respectively. Among these species, 12 distinct haplotypes were identified suggesting multiple introductions into the country. A subset of isolates was also used to compare aggressiveness in causing disease on strawberry plants and fruits. Isolates belonging to C. nymphaeae, C. godetiae and C. fioriniae representative of the UK anthracnose pathogen populations showed variation in their aggressiveness. Among the three species, C. nymphaeae and C. fioriniae appeared to be more aggressive compared to C. godetiae. This study highlights the genetic and pathogenic heterogeneity of the C. acutatum s.l. populations introduced into the UK linked to strawberry production. 相似文献
58.
M A Debrincat I Pleines M Lebois R M Lane M L Holmes J Corbin C J Vandenberg W S Alexander A P Ng A Strasser P Bouillet M Sola-Visner B T Kile E C Josefsson 《Cell death & disease》2015,6(4):e1721
Navitoclax (ABT-263), an inhibitor of the pro-survival BCL-2 family proteins BCL-2, BCL-XL and BCL-W, has shown clinical efficacy in certain BCL-2-dependent haematological cancers, but causes dose-limiting thrombocytopaenia. The latter effect is caused by Navitoclax directly inducing the apoptotic death of platelets, which are dependent on BCL-XL for survival. Recently, ABT-199, a selective BCL-2 antagonist, was developed. It has shown promising anti-leukaemia activity in patients whilst sparing platelets, suggesting that the megakaryocyte lineage does not require BCL-2. In order to elucidate the role of BCL-2 in megakaryocyte and platelet survival, we generated mice with a lineage-specific deletion of Bcl2, alone or in combination with loss of Mcl1 or Bclx. Platelet production and platelet survival were analysed. Additionally, we made use of BH3 mimetics that selectively inhibit BCL-2 or BCL-XL. We show that the deletion of BCL-2, on its own or in concert with MCL-1, does not affect platelet production or platelet lifespan. Thrombocytopaenia in Bclx-deficient mice was not affected by additional genetic loss or pharmacological inhibition of BCL-2. Thus, BCL-2 is dispensable for thrombopoiesis and platelet survival in mice.Platelets are anucleate blood cells that play essential roles in haemostasis, wound healing and a range of other processes, including inflammation and immunity.1 They are produced by megakaryocytes, large polyploid cells that develop primarily in the bone marrow, spleen and foetal liver.2 Recent work has demonstrated that the survival of megakaryocytes and platelets is governed by the BCL-2 family proteins.3 Both cell types possess a classical BAK/BAX-mediated intrinsic apoptosis pathway that must be restrained in order for them to develop and survive.In platelets, BCL-XL is the critical pro-survival BCL-2 family member required to keep BAK and BAX in check. The first evidence of this came from Wagner et al.,4 who reported severe thrombocytopaenia in mice after MMTV-Cre-mediated deletion of Bclx in the haematopoietic system, skin and various secretory tissues. It has since been shown that megakaryocyte-restricted deletion of Bclx in mice reduces platelet lifespan from ~5 days to ~5 h, with a concomitant decrease in platelet counts to ~2% of wild-type levels.5, 6 Pharmacological inhibition of BCL-XL with the BH3 mimetics ABT-7377 or Navitoclax (ABT-263)8 (which both also inhibit BCL-2 and BCL-W) triggers BAK/BAX-mediated platelet apoptosis.9, 10, 11 As a result, these drugs cause dose-dependent thrombocytopaenia in mice, dogs and humans.9, 11, 12, 13, 14 Indeed, thrombocytopaenia is the dose-limiting toxicity for Navitoclax.12, 13, 14 This fact provided additional impetus for the development of agents that specifically target BCL-2, beginning with ABT-199,15 a BCL-2-selective antagonist currently in clinical trials for the treatment of a range of haematological malignancies including chronic lymphocytic leukaemia, non-Hodgkin''s lymphoma, follicular lymphoma, mantle cell lymphoma, multiple myeloma and acute myeloid leukaemia. ABT-199 has already shown very promising anti-tumour activity, with little to no impact on platelet counts.15, 16 These data suggest that BCL-2 is dispensable for the development and survival of platelets.In megakaryocytes, BCL-XL is also critical for survival. Although not absolutely required for their growth and maturation, BCL-XL is essential for megakaryocytes to proceed safely through pro-platelet formation and platelet shedding.5 In addition to BCL-XL, megakaryocytes also depend on the pro-survival activity of MCL-1. Conditional deletion of Mcl1 alone has no effect on this lineage. In contrast, combined megakaryocyte-specific loss of Bclx and Mcl1 results in the failure of megakaryopoiesis, systemic haemorrhage and embryonic lethality.5, 17, 18 These defects are rescued by deletion of Bak and Bax.18Consistent with the genetic studies, administration of ABT-737 to Mcl1Pf4Δ/Pf4Δ mice, which lack MCL-1 in megakaryocytes and platelets, induces acute, fulminant BAK/BAX-dependent megakaryocyte apoptosis. Given that, in addition to BCL-XL, ABT-737 also targets BCL-2,7 these data suggested that BCL-2 might also contribute to the development and survival of the megakaryocyte lineage. This is supported by recent studies demonstrating that neonatal human platelets contain increased levels of BCL-2 relative to adult counterparts,19 and that platelet lifespan is extended in transgenic mice expressing BCL-2 under the control of the pan-haematopoietic Vav promoter.20 In light of these observations, and intense ongoing activity surrounding the development of novel BH3 mimetics,21 we set out to elucidate the role of BCL-2 in megakaryocytes and platelets. Mice with a megakaryocyte-specific deletion of Bcl2, either alone or in combination with deletion of Mcl1 or Bclx, were generated. The effect of these mutations, and of BCL-2 or BCL-XL-selective BH3 mimetics, on the megakaryocyte lineage was assessed. 相似文献
59.
60.
Overexpression of GLUT4 in mice causes up-regulation of UCP3 mRNA in skeletal muscle 总被引:2,自引:0,他引:2
Tsuboyama-Kasaoka N Tsunoda N Maruyama K Takahashi M Kim H Cooke DW Lane MD Ezaki O 《Biochemical and biophysical research communications》1999,258(1):187-193
Mitochondrial uncoupling protein 3 (UCP3) is expressed in skeletal muscles. We have hypothesized that increased glucose flux in skeletal muscles may lead to increased UCP3 expression. Male transgenic mice harboring insulin-responsive glucose transporter (GLUT4) minigenes with differing lengths of 5'-flanking sequence (-3237, -2000, -1000 and -442 bp) express different levels of GLUT4 protein in various skeletal muscles. Expression of the GLUT4 transgenes caused an increase in UCP3 mRNA that paralleled the increase of GLUT4 protein in gastrocnemius muscle. The effects of increased intracellular GLUT4 level on the expression of UCP1, UCP2 and UCP3 were compared in several tissues of male 4 month-old mice harboring the -1000 GLUT4 minigene transgene. In the -1000 GLUT4 transgenic mice, expression of GLUT4 mRNA and protein in skeletal muscles, brown adipose tissue (BAT), and white adipose tissue (WAT) was increased by 1.4 to 4.0-fold. Compared with non-transgenic littermates, the -1000 GLUT4 mice exhibited about 4- and 1.8-fold increases of UCP3 mRNA in skeletal muscle and WAT, respectively, and a 38% decrease of UCP1 mRNA in BAT. The transgenic mice had a 16% increase in oxygen consumption and a 14% decrease in blood glucose and a 68% increase in blood lactate, but no change in FFA or beta-OHB levels. T3 and leptin concentrations were decreased in transgenic mice. Expression of UCP1 in BAT of the -442 GLUT4 mice, which did not overexpress GLUT4 in this tissue, was not altered. These findings indicate that overexpression of GLUT4 up-regulates UCP3 expression in skeletal muscle and down-regulates UCP1 expression in BAT, possibly by increasing the rate of glucose uptake into these tissues. 相似文献