首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   9篇
  2021年   1篇
  2017年   2篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   5篇
  2011年   2篇
  2010年   4篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  2000年   5篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1992年   5篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1985年   2篇
  1984年   5篇
  1983年   2篇
  1982年   1篇
  1980年   3篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
排序方式: 共有73条查询结果,搜索用时 46 毫秒
11.
DNA/RNA methylation plays an important role in lung cancer initiation and progression. Liquid biopsy makes use of cells, nucleotides and proteins released from tumor cells into body fluids to help with cancer diagnosis and prognosis. Methylation of circulating tumor DNA (ctDNA) has gained increasing attention as biomarkers for lung cancer. Here we briefly introduce the biological basis and detection method of ctDNA methylation, and review various applications of methylated DNA in body fluids in lung cancer screening, diagnosis, prognosis, monitoring and treatment prediction. We also discuss the emerging role of RNA methylation as biomarkers for cancer.  相似文献   
12.
The Peranakan Chinese are culturally unique descendants of immigrants from China who settled in the Malay Archipelago ∼300–500 years ago. Today, among large communities in Southeast Asia, the Peranakans have preserved Chinese traditions with strong influence from the local indigenous Malays. Yet, whether or to what extent genetic admixture co-occurred with the cultural mixture has been a topic of ongoing debate. We performed whole-genome sequencing (WGS) on 177 Singapore (SG) Peranakans and analyzed the data jointly with WGS data of Asian and European populations. We estimated that Peranakan Chinese inherited ∼5.62% (95% confidence interval [CI]: 4.76–6.49%) Malay ancestry, much higher than that in SG Chinese (1.08%, 0.65–1.51%), southern Chinese (0.86%, 0.50–1.23%), and northern Chinese (0.25%, 0.18–0.32%). A sex-biased admixture history, in which the Malay ancestry was contributed primarily by females, was supported by X chromosomal variants, and mitochondrial (MT) and Y haplogroups. Finally, we identified an ancient admixture event shared by Peranakan Chinese and SG Chinese ∼1,612 (95% CI: 1,345–1,923) years ago, coinciding with the settlement history of Han Chinese in southern China, apart from the recent admixture event with Malays unique to Peranakan Chinese ∼190 (159–213) years ago. These findings greatly advance our understanding of the dispersal history of Chinese and their interaction with indigenous populations in Southeast Asia.  相似文献   
13.
The major phospholipase A2 activity in sheep platelets is mediated by at least three chromatographically resolvable isoforms of a 30-kDa dimeric polypeptide which are responsive to physiologic increments in calcium ion and possess a dramatic substrate selectivity (Loeb, L. A., and Gross, R. W. (1986) J. Biol. Chem. 261, 10467-10470). Herein, we describe the cloning and expression of the human equivalent of one such isoform and demonstrate that it catalyzes the cleavage of the sn-2 fatty acid of choline and ethanolamine glycerophospholipids through the formation of a stable acyl-enzyme intermediate. Transesterification of the sn-2 acyl group of phosphatidylcholine to the recombinant 30-kDa polypeptide is over 50-fold selective for arachidonic acid, is augmented by calcium ion, and results in the formation of an arachidonoyl-thioester intermediate. Homology analysis demonstrated that the polypeptide mediating this transesterification is one member of a family of proteins collectively designated as 14-3-3 proteins. These results demonstrate that at least one intracellular mammalian phospholipase A2 employs a catalytic strategy distinct from that utilized by extracellular phospholipases A2 (i.e. formation of an acyl-enzyme intermediate by nucleophilic attack versus activation of a water molecule) and that arachidonic acid in endogenous phospholipid storage depots can, in principle, be sequentially transferred through an acyl-enzyme intermediate without the prior obligatory release of free arachidonic acid.  相似文献   
14.
15.
The weight-average molecular weight of the Mo-Fe protein isolated from Azotobacter vinelandii has been determined by sedimentation-equilibrium techniques. In buffer, the value is 245000+/-5000; in 8M-urea, the value is 61000+/-1000. The protein was separated into two components by chromatography on CM-cellulose in 7M-urea, pH 4.5. These components have similar molecular weights but were shown to differ in charge, amino acid content and arginine-containing peptides. It is proposed that the tetramer has the subunit composition (nalpha2nbeta2).  相似文献   
16.
Five phosphonic acid derivatives were synthesized, coupled to agarose, and tested for affinity chromatographic binding of alkaline phosphatase from bovine intestine. Agarose coupled to L-histidyldiazobenzylphosphonic acid was found to be a highly effective adsorbent. In order to understand the large differences in binding capacity observed with derivatized agaroses, inhibition of alkaline phosphatase by phosphonic acid ligands, and related phosphonic acids, was measured. The results of affinity chromatography and inhibition studies were in good agreement, demonstrating that phosphonic acids with large aromatic/hydrophobic, carboxylate substituents bind strongly and competitively to the enzyme active site.  相似文献   
17.
Peptide nucleic acid (PNA)-mediated PCR clamping (H. Orum, P. E. Nielsen, M. Egholm, R. H. Berg, O. Buchardt, and C. Stanley, Nucleic Acids Res. 21:5332-5336, 1993) was introduced as a novel procedure to selectively amplify ribosomal DNAs (rDNAs) which are not frequently found in clone libraries generated by standard PCR from complex microbial consortia. Three different PNA molecules were used; two of these molecules (PNA-ALF and PNA-EUB353) overlapped with one of the amplification primers, whereas PNA-1114F hybridized to the middle of the amplified region. Thus, PCR clamping was achieved either by competitive binding between the PNA molecules and the forward or reverse primers (competitive clamping) or by hindering polymerase readthrough (elongation arrest). Gene libraries generated from mixed rDNA templates by using PCR clamping are enriched for clones that do not contain sequences homologous to the appropriate PNA oligomer. This effect of PCR clamping was exploited in the following two ways: (i) analysis of gene libraries generated by PCR clamping with PNA-ALF together with standard libraries reduced the number of clones which had to be analyzed to detect all of the different sequences present in an artificial rDNA mixture; and (ii) PCR clamping with PNA-EUB353 and PNA-1114F was used to selectively recover rDNA sequences which represented recently described phylogenetic groups (NKB19, TM6, cluster related to green nonsulfur bacteria) from an anaerobic, dechlorinating consortium described previously. We concluded that PCR clamping might be a useful supplement to standard PCR amplification in rDNA-based studies of microbial diversity and could be used to selectively recover members of undescribed phylogenetic clusters from complex microbial communities.  相似文献   
18.
Peptide nucleic acids (PNA) are synthetic homologs of nucleic acids in which the phosphate-sugar polynucleotide backbone is replaced by a flexible polyamide. In this study, a PNA construct was employed as an anti-gene agent in intact cells in culture. The cell lines studied were derived from Burkitt's lymphomas (BL) that presented a translocated and hyperexpressed c-myc oncogene. A 17-mer anti-myc PNA, complementary to a unique sequence located at the beginning of the second exon of the oncogene, and was covalently linked at its N terminus to a nuclear localization signal (NLS) (PNA-myc(wt)-NLS). When BL cells were exposed to PNA-myc(wt)-NLS, the anti-gene construct was localized predominantly in the cell nuclei and a rapid consequent downregulation of c-myc expression occurred. Under these conditions, both completion of a productive cell cycle and apoptosis were inhibited.  相似文献   
19.
Peptide nucleic acid (PNA)-mediated PCR clamping (H. Ørum, P. E. Nielsen, M. Egholm, R. H. Berg, O. Buchardt, and C. Stanley, Nucleic Acids Res. 21:5332–5336, 1993) was introduced as a novel procedure to selectively amplify ribosomal DNAs (rDNAs) which are not frequently found in clone libraries generated by standard PCR from complex microbial consortia. Three different PNA molecules were used; two of these molecules (PNA-ALF and PNA-EUB353) overlapped with one of the amplification primers, whereas PNA-1114F hybridized to the middle of the amplified region. Thus, PCR clamping was achieved either by competitive binding between the PNA molecules and the forward or reverse primers (competitive clamping) or by hindering polymerase readthrough (elongation arrest). Gene libraries generated from mixed rDNA templates by using PCR clamping are enriched for clones that do not contain sequences homologous to the appropriate PNA oligomer. This effect of PCR clamping was exploited in the following two ways: (i) analysis of gene libraries generated by PCR clamping with PNA-ALF together with standard libraries reduced the number of clones which had to be analyzed to detect all of the different sequences present in an artificial rDNA mixture; and (ii) PCR clamping with PNA-EUB353 and PNA-1114F was used to selectively recover rDNA sequences which represented recently described phylogenetic groups (NKB19, TM6, cluster related to green nonsulfur bacteria) from an anaerobic, dechlorinating consortium described previously. We concluded that PCR clamping might be a useful supplement to standard PCR amplification in rDNA-based studies of microbial diversity and could be used to selectively recover members of undescribed phylogenetic clusters from complex microbial communities.  相似文献   
20.
Twin studies suggest that genetic factors play a substantial role in anorexia nervosa (AN) and self‐induced vomiting (SV), a key symptom that is shared among different types of eating disorders (EDs). We investigated the association of 25 single nucleotide polymorphisms (SNPs), capturing 71–91% of the common variance in candidate genes, stathmin (STMN1), serotonin receptor 1D (HTR1D), tryptophan hydroxylase 2 (TPH2) and brain‐derived neurotrophic factor (BDNF), with AN and EDs characterized by regular SV. The first allele frequencies of all the SNPs were compared between a Dutch case group (182 AN, 149 EDs characterized by SV) and 607 controls. Associations rendering P‐values < 0.05 from this initial study were then tested for replication in a meta‐analysis with two additional independent ED case–control samples, together providing 887 AN cases, 306 cases with an ED characterized by SV and 1914 controls. A significant effect for the minor C‐allele of tryptophan hydroxylase 2 rs1473473 was observed for both AN [odds ratio (OR) = 1.30, 95% CI 1.08–1.57, P < 0.003] and EDs characterized by SV (OR = 1.52, 95% CI 1.28–2.04, P < 0.006). In the combined case group, a dominant effect was observed for rs1473473 (OR = 1.38, 95% CI 1.16–1.64, P < 0.0003). The meta‐analysis revealed that the tryptophan hydroxylase 2 polymorphism rs1473473 was associated with a higher risk for AN, EDs characterized by SV and for the combined group.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号