首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   21篇
  2022年   2篇
  2021年   2篇
  2019年   2篇
  2018年   3篇
  2016年   5篇
  2015年   10篇
  2014年   7篇
  2013年   10篇
  2012年   14篇
  2011年   22篇
  2010年   8篇
  2009年   8篇
  2008年   15篇
  2007年   6篇
  2006年   12篇
  2005年   11篇
  2004年   6篇
  2003年   7篇
  2002年   4篇
  2001年   7篇
  2000年   6篇
  1999年   6篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1992年   4篇
  1991年   5篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1973年   2篇
  1972年   2篇
  1971年   1篇
  1970年   2篇
  1968年   1篇
  1961年   1篇
  1957年   1篇
排序方式: 共有242条查询结果,搜索用时 578 毫秒
31.
The second messenger lipid PIP(3) (phosphatidylinositol-3,4,5-trisphosphate) is generated by the lipid kinase PI3K (phosphoinositide-3-kinase) in the inner leaflet of the plasma membrane, where it regulates a broad array of cell processes by recruiting multiple signaling proteins containing PIP(3)-specific pleckstrin homology (PH) domains to the membrane surface. Despite the broad importance of PIP(3)-specific PH domains, the membrane docking geometry of a PH domain bound to its target PIP(3) lipid on a bilayer surface has not yet been experimentally determined. The present study employs EPR site-directed spin labeling and relaxation methods to elucidate the membrane docking geometry of GRP1 PH domain bound to bilayer-embedded PIP(3). The model target bilayer contains the neutral background lipid PC and both essential targeting lipids: (i) PIP(3) target lipid that provides specificity and affinity, and (ii) PS facilitator lipid that enhances the PIP(3) on-rate via an electrostatic search mechanism. The EPR approach measures membrane depth parameters for 18 function-retaining spin labels coupled to the PH domain, and for calibration spin labels coupled to phospholipids. The resulting depth parameters, together with the known high resolution structure of the co-complex between GRP1 PH domain and the PIP(3) headgroup, provide sufficient constraints to define an optimized, self-consistent membrane docking geometry. In this optimized geometry the PH domain engulfs the PIP(3) headgroup with minimal bilayer penetration, yielding the shallowest membrane position yet described for a lipid binding domain. This binding interaction displaces the PIP(3) headgroup from its lowest energy position and orientation in the bilayer, but the headgroup remains within its energetically accessible depth and angular ranges. Finally, the optimized docking geometry explains previous biophysical findings including mutations observed to disrupt membrane binding, and the rapid lateral diffusion observed for PIP(3)-bound GRP1 PH domain on supported lipid bilayers.  相似文献   
32.
33.
Y-P30 is a polypeptide produced by peripheral blood mononuclear cells of the maternal immune system during pregnancy. The peptide passes the blood-placenta barrier and accumulates in neurons of the developing infant brain, where it enhances survival of thalamic neurons and displays neuritogenic activities. In this study, we identify pleiotrophin (PTN) and syndecan-2 and -3 as direct binding partners of Y-P30. PTN is known to promote neurite outgrowth of thalamic neurons due to its association with the proteoglycan syndecan-3. Via spontaneous oligomerization Y-P30 can capture large macromolecular complexes containing PTN and potentially syndecans. Accordingly, the neuritogenic activity of Y-P30 in thalamic primary cultures requires the presence of PTN in the media and binding to syndecans. Thus, we propose that the neurite outgrowth promoting actions of Y-P30 during brain development are essentially based on its association with the PTN/syndecan signaling complex. This identifies a new mechanism of communication between the nervous and the immune system that might directly affect the wiring of the brain during development.  相似文献   
34.
Infections caused by Trichinella species occur throughout the world in many wild and domestic animals resulting in trichinellosis in men. In Europe, domestic pigs are predominantly infected by three Trichinella species: T. spiralis, T. britovi and T. pseudospiralis. Present methods for detection of Trichinella spp. (compressorium method, artificial digestion) do not always sufficiently recognize Trichinella larvae and these techniques are labor-intensive, time consuming and do not differentiate isolates on the species level since there are no distinguishing morphological features. Additionally, conventional PCRs cannot quantify numbers of larvae in infectious material. In order to better meet these requirements, we developed a real-time PCR assay for the accurate, rapid and specific identification of the three common European species of the genus Trichinella. The assay targets the large subunit of the mitochondrial rRNA (rrnL) and enables sensitive determination and discrimination of larvae in muscle tissue samples. The real-time PCR assay was developed and validated using reference and field strains from T. spiralis, T. britovi and T. pseudospiralis. In the described real-time PCR assay, the melting points of specific amplificates were always discernable via the melting curve from melting points of unspecific amplificates. This is important for the methods workflow because only C(T) values connected with the additional melting curve analysis allow a distinction of the individual species with confidence. The sensitivity of the technique enabled detection down to 0.1 Trichinella larva per gram meat sample. High disruption levels of tissues by mincing generally resulted in higher sensitivities than protocols without mincing. With its short completion time as well as accurate and specific detection of selected species this assay could become a convenient tool for the fast detection of Trichinella larvae in meat.  相似文献   
35.
36.
Olfactory sensory neurons connect to the antennal lobe of the fly to create the primary units for processing odor cues, the glomeruli. Unique amongst antennal-lobe neurons is an identified wide-field serotonergic neuron, the contralaterally-projecting, serotonin-immunoreactive deutocerebral neuron (CSDn). The CSDn spreads its termini all over the contralateral antennal lobe, suggesting a diffuse neuromodulatory role. A closer examination, however, reveals a restricted pattern of the CSDn arborization in some glomeruli. We show that sensory neuron-derived Eph interacts with Ephrin in the CSDn, to regulate these arborizations. Behavioural analysis of animals with altered Eph-ephrin signaling and with consequent arborization defects suggests that neuromodulation requires local glomerular-specific patterning of the CSDn termini. Our results show the importance of developmental regulation of terminal arborization of even the diffuse modulatory neurons to allow them to route sensory-inputs according to the behavioural contexts.  相似文献   
37.
38.

Background

Membrane-associated progesterone receptors are restricted to the endoplasmic reticulum and are shown to regulate the activity of cytochrome P450 enzymes which are involved in steroidogenesis or drug detoxification. PGRMC1 and PGRMC2 belong to the membrane-associated progesterone receptor family and are of interest due to their suspected role during cell cycle. PGRMC1 and PGRMC2 are thought to bind to each other; thereby suppressing entry into mitosis. We could previously report that PGRMC2 interacts with the nucleoporin ALADIN which when mutated results in the autosomal recessive disorder triple A syndrome. ALADIN is a novel regulator of mitotic controller Aurora kinase A and depletion of this nucleoporin leads to microtubule instability.

Results

In the current study, we present that proliferation is decreased when ALADIN, PGRMC1 or PGRMC2 are over-expressed. Furthermore, we find that depletion of ALADIN results in mislocalization of Aurora kinase A and PGRMC1 in metaphase cells. Additionally, PGRMC2 is over-expressed in triple A patient fibroblasts.

Conclusion

Our results emphasize the possibility that loss of the regulatory association between ALADIN and PGRMC2 gives rise to a depletion of PGRMC1 at kinetochore fibers. This observation may explain part of the symptoms seen in triple A syndrome patients.
  相似文献   
39.

Background

Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, including hyper- or hypo-activity of the stress hormone system, plays a critical role in the pathophysiology of mood disorders such as major depression (MD). Further biological hallmarks of MD are disturbances in circadian rhythms and sleep architecture. Applying a translational approach, an animal model has recently been developed, focusing on the deviation in sensitivity to stressful encounters. This so-called ‘stress reactivity’ (SR) mouse model consists of three separate breeding lines selected for either high (HR), intermediate (IR), or low (LR) corticosterone increase in response to stressors.

Methodology/Principle Findings

In order to contribute to the validation of the SR mouse model, our study combined the analysis of behavioural and HPA axis rhythmicity with sleep-EEG recordings in the HR/IR/LR mouse lines. We found that hyper-responsiveness to stressors was associated with psychomotor alterations (increased locomotor activity and exploration towards the end of the resting period), resembling symptoms like restlessness, sleep continuity disturbances and early awakenings that are commonly observed in melancholic depression. Additionally, HR mice also showed neuroendocrine abnormalities similar to symptoms of MD patients such as reduced amplitude of the circadian glucocorticoid rhythm and elevated trough levels. The sleep-EEG analyses, furthermore, revealed changes in rapid eye movement (REM) and non-REM sleep as well as slow wave activity, indicative of reduced sleep efficacy and REM sleep disinhibition in HR mice.

Conclusion/Significance

Thus, we could show that by selectively breeding mice for extremes in stress reactivity, clinically relevant endophenotypes of MD can be modelled. Given the importance of rhythmicity and sleep disturbances as biomarkers of MD, both animal and clinical studies on the interaction of behavioural, neuroendocrine and sleep parameters may reveal molecular pathways that ultimately lead to the discovery of new targets for antidepressant drugs tailored to match specific pathologies within MD.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号