首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   284篇
  免费   65篇
  349篇
  2022年   4篇
  2021年   7篇
  2020年   4篇
  2019年   8篇
  2018年   7篇
  2017年   5篇
  2016年   8篇
  2015年   12篇
  2014年   16篇
  2013年   18篇
  2012年   20篇
  2011年   20篇
  2010年   17篇
  2009年   13篇
  2008年   9篇
  2007年   8篇
  2006年   9篇
  2005年   16篇
  2004年   10篇
  2003年   13篇
  2002年   7篇
  2001年   10篇
  2000年   7篇
  1999年   11篇
  1998年   5篇
  1997年   3篇
  1996年   7篇
  1995年   5篇
  1994年   3篇
  1993年   2篇
  1992年   12篇
  1991年   7篇
  1990年   4篇
  1989年   3篇
  1988年   5篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1975年   2篇
  1965年   1篇
  1957年   1篇
  1954年   1篇
  1950年   1篇
  1945年   1篇
  1938年   1篇
  1935年   1篇
  1933年   1篇
  1915年   1篇
  1913年   1篇
排序方式: 共有349条查询结果,搜索用时 15 毫秒
81.
Restriction fragment length polymorphisms (RFLPs) were developed as genetic markers for Bremia lactucae, the biotrophic Oomycete fungus which causes lettuce downy mildew. By using 55 genomic and cDNA probes, a total of 61 RFLP loci were identified among three heterothallic isolates of B. lactucae. Of these 61 RFLP loci, 53 were heterozygous in at least one of the three strains and thus were informative for linkage analysis in at least one of two F1 crosses that were performed. Analysis of the cosegregation of these 53 RFLPs, eight avirulence loci and the mating type locus allowed the construction of a preliminary genetic linkage map consisting of 13 small linkage groups. Based on the extent of linkage detected among probes, the genome of B. lactucae can be estimated to be approximately 2000 cM. Linkage was detected between a RFLP locus and an avirulence gene, providing a potential starting point for chromosome walking to clone an avirulence gene. The high frequency of DNA polymorphism in naturally occurring isolates and the proper Mendelian segregation of loci detected by low copy number probes indicates that it will be possible to construct a detailed genetic map of B. lactucae using RFLPs as markers. The method of analysis employed here should be applicable to many other outbreeding, heterozygous species for which defined inbred lines are not available.  相似文献   
82.
83.
Positional identities along the anterior–posterior axis of the vertebrate nervous system are assigned during gastrulation by multiple posteriorizing signals, including retinoic acid (RA), fibroblast growth factors (Fgfs), and Wnts. Experimental evidence has suggested that RA, which is produced in paraxial mesoderm posterior to the hindbrain by aldehyde dehydrogenase 1a2 (aldh1a2/raldh2), forms a posterior-to-anterior gradient across the hindbrain field, and provides the positional information that specifies the locations and fates of rhombomeres. Recently, alternative models have been proposed in which RA plays only a permissive role, signaling wherever it is not degraded. Here we use a combination of experimental and modeling tools to address the role of RA in providing long-range positional cues in the zebrafish hindbrain. Using cell transplantation and implantation of RA-coated beads into RA-deficient zebrafish embryos, we demonstrate that RA can directly convey graded positional information over long distances. We also show that expression of Cyp26a1, the major RA-degrading enzyme during gastrulation, is under complex feedback and feedforward control by RA and Fgf signaling. The predicted consequence of such control is that RA gradients will be both robust to fluctuations in RA synthesis and adaptive to changes in embryo length during gastrulation. Such control also provides an explanation for the fact that loss of an endogenous RA gradient can be compensated for by RA that is provided in a spatially uniform manner.  相似文献   
84.
P K Sehajpal  A Basu  J S Ogiste  H M Lander 《Biochemistry》1999,38(40):13407-13413
Nitric oxide (*NO) is a short-lived free radical with many functions including vasoregulation, synaptic plasticity, and immune modulation and has recently been associated with AIDS pathology. Various pathophysiological conditions, such as viral infection, trigger inducible nitric oxide synthase (iNOS) to synthesize NO in the cell. NO-derived species can react with thiols of proteins and form nitrosothiol adducts. HIV-1 protease (HIV-PR) contains two cysteine residues, Cys67 and Cys95, which are believed to serve a regulatory function. We have found that HIV-PR is inactivated by nitric oxide produced in vitro by NO donors and by iNOS. Sodium nitroprusside inhibited HIV-PR by 70%, and S-nitroso-N-acetylpenicillamine completely inhibited the enzyme. Furthermore, iNOS generated sufficient NO to inhibit HIV-PR activity by almost 90%. This inactivation was reversed by the addition of reducing agents. Treatment of HIV-PR with NO donors and ritonavir (a competitive peptide inhibitor) indicates that NO exerts its effect through a site independent of the active site of HIV-PR. Using electrospray ionization mass spectrometry, we found that NO forms S-nitrosothiols on Cys67 and Cys95 of HIV-PR which directly correlate with a loss of activity. These data indicate that NO may suppress HIV-1 replication by directly inhibiting HIV-PR.  相似文献   
85.
With the advent of RFLPs, genetic linkage maps are now being assembled for a number of organisms including both inbred experimental populations such as maize and outbred natural populations such as humans. Accurate construction of such genetic maps requires multipoint linkage analysis of particular types of pedigrees. We describe here a computer package, called MAPMAKER, designed specifically for this purpose. The program uses an efficient algorithm that allows simultaneous multipoint analysis of any number of loci. MAPMAKER also includes an interactive command language that makes it easy for a geneticist to explore linkage data. MAPMAKER has been applied to the construction of linkage maps in a number of organisms, including the human and several plants, and we outline the mapping strategies that have been used.  相似文献   
86.
87.
88.
Chemical lysis of bacterial cells using an alkaline solution containing a detergent may provide an efficient scalable means for selectively removing covalently closed circular plasmid DNA from high-molecular-weight contaminating cellular components including chromosomal DNA. In this article we assess the chemical lysis of E. coli cells by SDS in a NaOH solution and determine the impact of pH environment and shear on the supercoiled plasmid and chromosomal DNA obtained. Experiments using a range of plasmids from 6 kb to 113 kb determined that in an unfavorable alkaline environment, where the NaOH concentration during lysis is greater than 0.15 +/- 0.03 M (pH 12.9 +/- 0.2), irreversible denaturation of the supercoiled plasmid DNA occurs. The extent of denaturation is shown to increase with time of exposure and NaOH concentration. Experiments using stirred vessels show that, depending on NaOH concentration, moderate to high mixing rates are necessary to maximize plasmid yield. While NaOH concentration does not significantly affect chromosomal DNA contamination, a high NaOH concentration is necessary to ensure complete conversion of chromosomal DNA to single-stranded form. In a mechanically agitated lysis reactor the correct mixing strategy must balance the need for sufficient mixing to eliminate potential regions of high NaOH concentrations and the need to avoid excessive breakage of the shear sensitive chromosomal DNA. The effect of shear on chromosomal DNA is examined over a wide range of shear rates (10(1)-10(5) s(-1)) demonstrating that, while increasing shear leads to fragmentation of chromosomal DNA to smaller sizes, it does not lead to significantly increased chromosomal DNA contamination except at very high shear rates (about 10(4)-10(5) s(-1)). The consequences of these effects on the choice of lysis reactor and scale-up are discussed.  相似文献   
89.
90.
As part of ongoing studies regarding the genetic basis of quantitative variation in phenotype, we have determined the chromosomal locations of quantitative trait loci (QTLs) affecting fruit size, soluble solids concentration, and pH, in a cross between the domestic tomato (Lycopersicon esculentum Mill.) and a closely-related wild species, L. cheesmanii. Using a RFLP map of the tomato genome, we compared the inheritance patterns of polymorphisms in 350 F2 individuals with phenotypes scored in three different ways: (1) from the F2 progeny themselves, grown near Davis, California; (2) from F3 families obtained by selfing each F2 individual, grown near Gilroy, California (F3-CA); and (3) from equivalent F3 families grown near Rehovot, Israel (F3-IS). Maximum likelihood methods were used to estimate the approximate chromosomal locations, phenotypic effects (both additive effects and dominance deviations), and gene action of QTLs underlying phenotypic variation in each of these three environments. A total of 29 putative QTLs were detected in the three environments. These QTLs were distributed over 11 of the 12 chromosomes, accounted for 4.7-42.0% of the phenotypic variance in a trait, and showed different types of gene action. Among these 29 QTLs, 4 were detected in all three environments, 10 in two environments, and 15 in only a single environment. The two California environments were most similar, sharing 11/25 (44%) QTLs, while the Israel environment was quite different, sharing 7/20 (35%) and 5/26 (19%) QTLs with the respective California environments. One major goal of QTL mapping is to predict, with maximum accuracy, which individuals will produce progeny showing particular phenotypes. Traditionally, the phenotype of an individual alone has been used to predict the phenotype of its progeny. Our results suggested that, for a trait with low heritability (soluble solids), the phenotype of F3 progeny could be predicted more accurately from the genotype of the F2 parent at QTLs than from the phenotype of the F2 individual. For a trait with intermediate heritability (fruit pH), QTL genotype and observed phenotype were about equally effective at predicting progeny phenotype. For a trait with high heritability (mass per fruit), knowing the QTL genotype of an individual added little if any predictive value, to simply knowing the phenotype. The QTLs mapped in the L. esculentum X L. cheesmanii F2 appear to be at similar locations to many of those mapped in a previous cross with a different wild tomato (L. chmielewskii).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号