首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1178篇
  免费   84篇
  国内免费   1篇
  1263篇
  2023年   7篇
  2022年   9篇
  2021年   15篇
  2020年   15篇
  2019年   17篇
  2018年   15篇
  2017年   16篇
  2016年   25篇
  2015年   50篇
  2014年   50篇
  2013年   55篇
  2012年   100篇
  2011年   88篇
  2010年   59篇
  2009年   54篇
  2008年   60篇
  2007年   65篇
  2006年   70篇
  2005年   56篇
  2004年   74篇
  2003年   58篇
  2002年   62篇
  2001年   14篇
  2000年   12篇
  1999年   12篇
  1998年   9篇
  1997年   12篇
  1996年   5篇
  1995年   6篇
  1994年   8篇
  1993年   5篇
  1992年   7篇
  1991年   5篇
  1989年   8篇
  1987年   4篇
  1986年   6篇
  1984年   11篇
  1983年   12篇
  1982年   9篇
  1981年   6篇
  1980年   13篇
  1979年   5篇
  1978年   8篇
  1977年   8篇
  1976年   6篇
  1975年   8篇
  1974年   7篇
  1973年   4篇
  1972年   4篇
  1970年   8篇
排序方式: 共有1263条查询结果,搜索用时 0 毫秒
21.
Improving genome assemblies by sequencing PCR products with PacBio   总被引:1,自引:0,他引:1  
Advances in sequencing technologies have dramatically reduced costs in producing high-quality draft genomes. However, there are still many contigs and possible misassembled regions in those draft genomes. Improving the quality of these genomes requires an efficient and economical means to close gaps and resequence some regions. Sequencing pooled gap region PCR products with Pacific Biosciences (PacBio) provides a significantly less expensive means for this need. We have developed a genome improvement pipeline with this strategy after decreasing a loading bias against larger PCR products in the PacBio process. Compared with Sanger technology, this approach is not only cost-effective but also can close gaps greater than 2.5 kb in a single round of reactions, and sequence through high GC regions as well as difficult secondary structures such as small hairpin loops.  相似文献   
22.
The reproducibility of conventional two-dimensional (2D) gel electrophoresis can be improved using differential in-gel electrophoresis (DIGE), a new emerging technology for proteomic analysis. In DIGE, two pools of proteins are labeled with 1-(5-carboxypentyl)-1'-propylindocarbocyanine halide (Cy3) N-hydroxy-succinimidyl ester and 1-(5-carboxypentyl)-1'-methylindodi-carbocyanine halide (Cy5) N-hydroxysuccinimidyl ester fluorescent dyes, respectively. The labeled proteins are mixed and separated in the same 2D gel. 2D DIGE was applied to quantify the differences in protein expression between laser capture microdissection-procured esophageal carcinoma cells and normal epithelial cells and to define cancer-specific and normal-specific protein markers. Analysis of the 2D images from protein lysates of approximately 250,000 cancer cells and normal cells identified 1038 protein spots in cancer cell lysates and 1088 protein spots in normal cell lysates. Of the detected proteins, 58 spots were up-regulated by >3-fold and 107 were down-regulated by >3-fold in cancer cells. In addition to previously identified down-regulated protein annexin I, tumor rejection antigen (gp96) was found up-regulated in esophageal squamous cell cancer. Global quantification of protein expression between laser capture-microdissected patient-matched cancer cells and normal cells using 2D DIGE in combination with mass spectrometry is a powerful tool for the molecular characterization of cancer progression and identification of cancer-specific protein markers.  相似文献   
23.
Since Darwin, the maintenance of bright sexual colors has recurrently been linked to mate preference. However, the mechanisms underpinning such preferences for bright colors would not be resolved for another century. Likely, the idea of selection for colors that could decrease the chances of survival (e.g., flashy colors that can inadvertently attract predators) was perceived as counterintuitive. It is now widely accepted that these extreme colors often communicate to mates the ability to survive despite a “handicap” and act as honest signals of individual quality when they are correlated with the quality of other traits that are directly linked to individual fitness. Sexual colors in males are frequently perceived as indicators of infection resistance, in particular. Still, there remains considerable discord among studies attempting to parse the relationships between the variables associating sexual color and infection resistance, such as habitat type and body size. This discord may arise from complex interactions between these variables. Here, we ask if sexual color in male Florida scrub lizards (Sceloporus woodi) is an honest signal of resistance to chigger mite infection. To this end, we use linear modeling to explore relationships between mite load, different components of sexual color, ecological performance, body size, and habitat type. Our data show that that the brightness of sexual color in scrub lizards is negatively associated with the interaction between mite load and body size, and scrub lizards suffer decreased endurance capacity with increases in mite load. Our data also indicate that mite load, performance, and sexual color in male scrub lizards can vary between habitat types. Collectively, these results suggest that sexual color in scrub lizards is an honest indicator of individual quality and further underscore the importance of considering multiple factors when testing hypotheses related to the maintenance of sexual color.  相似文献   
24.
25.
The structures of nitrogenase Fe proteins with defined amino acid substitutions in the previously implicated nucleotide-dependent signal transduction pathways termed switch I and switch II have been determined by X-ray diffraction methods. In the Fe protein of nitrogenase the nucleotide-dependent switch regions are responsible for communication between the sites responsible for nucleotide binding and hydrolysis and the [4Fe-4S] cluster of the Fe protein and the docking interface that interacts with the MoFe protein upon macromolecular complex formation. In this study the structural characterization of the Azotobacter vinelandii nitrogenase Fe protein with Asp at position 39 substituted by Asn in MgADP-bound and nucleotide-free states provides an explanation for the experimental observation that the altered Fe proteins form a trapped complex subsequent to a single electron transfer event. The structures reveal that the substitution allows the formation of a hydrogen bond between the switch I Asn39 and the switch II Asp125. In the structure of the native enzyme the analogous interaction between the side chains of Asp39 and Asp125 is precluded due to electrostatic repulsion. These results suggest that the electrostatic repulsion between Asp39 and Asp125 is important for dissociation of the Fe protein:MoFe protein complex during catalysis. In a separate study, the structural characterization of the Fe protein with Asp129 substituted by Glu provides the structural basis for the observation that the Glu129-substituted variant in the absence of bound nucleotides has biochemical properties in common with the native Fe protein with bound MgADP. Interactions of the longer Glu side chain with the phosphate binding loop (P-loop) results in a similar conformation of the switch II region as the conformation that results from the binding of the phosphate of ADP to the P-loop.  相似文献   
26.
Rhodococcus sp. I24 can oxygenate indene via at least three independent enzyme activities: (i) a naphthalene inducible monooxygenase (ii) a naphthalene inducible dioxygenase, and (iii) a toluene inducible dioxygenase (TID). Pulsed field gel analysis revealed that the I24 strain harbors two megaplasmids of 340 and 50 kb. Rhodococcus sp. KY1, a derivative of the I24 strain, lacks the 340 kb element as well as the TID activity. Southern blotting and sequence analysis of an indigogenic, I24-derived cosmid suggested that an operon encoding a TID resides on the 340 kb element. Expression of the tid operon was induced by toluene but not by naphthalene. In contrast, naphthalene did induce expression of the nid operon, encoding the naphthalene dioxygenase in I24. Cell free protein extracts of Escherichia coli cells expressing tidABCD were used in HPLC-based enzyme assays to characterize the indene bioconversion of TID in vitro. In addition to 1-indenol, indene was transformed to cis-indandiol with an enantiomeric excess of 45.2% of cis-(1S,2R)-indandiol over cis-(1R,2S)-indandiol, as revealed by chiral HPLC analysis. The Km of TID for indene was 380 M. The enzyme also dioxygenated naphthalene to cis-dihydronaphthalenediol with an activity of 78% compared to the formation of cis-indandiol from indene. The Km of TID for naphthalene was 28 M. TID converted only trace amounts of toluene to 1,2-dihydro-3-methylcatechol after prolonged incubation time. The results indicate the role of the tid operon in the bioconversion of indene to 1-indenol and cis-(1S,2R)-indandiol by Rhodococcus sp. I24.  相似文献   
27.
Multiple therapeutic agonists of death receptor 5 (DR5) have been developed and are under clinical evaluation. Although these agonists demonstrate significant anti-tumor activity in preclinical models, the clinical efficacy in human cancer patients has been notably disappointing. One possible explanation might be that the current classes of therapeutic molecules are not sufficiently potent to elicit significant response in patients, particularly for dimeric antibody agonists that require secondary cross-linking via Fcγ receptors expressed on immune cells to achieve optimal clustering of DR5. To overcome this limitation, a novel multivalent Nanobody approach was taken with the goal of generating a significantly more potent DR5 agonist. In the present study, we show that trivalent DR5 targeting Nanobodies mimic the activity of natural ligand, and furthermore, increasing the valency of domains to tetramer and pentamer markedly increased potency of cell killing on tumor cells, with pentamers being more potent than tetramers in vitro. Increased potency was attributed to faster kinetics of death-inducing signaling complex assembly and caspase-8 and caspase-3 activation. In vivo, multivalent Nanobody molecules elicited superior anti-tumor activity compared to a conventional DR5 agonist antibody, including the ability to induce tumor regression in an insensitive patient-derived primary pancreatic tumor model. Furthermore, complete responses to Nanobody treatment were obtained in up to 50% of patient-derived primary pancreatic and colon tumor models, suggesting that multivalent DR5 Nanobodies may represent a significant new therapeutic modality for targeting death receptor signaling.  相似文献   
28.
Insulin stimulates glucose uptake into muscle and fat cells by promoting the translocation of glucose transporter 4 (GLUT4) to the cell surface. Phosphatidylinositide 3-kinase (PI3K) has been implicated in this process. However, the involvement of protein kinase B (PKB)/Akt, a downstream target of PI3K in regulation of GLUT4 translocation, has been controversial. Here we report that microinjection of a PKB substrate peptide or an antibody to PKB inhibited insulin-stimulated GLUT4 translocation to the plasma membrane by 66 or 56%, respectively. We further examined the activation of PKB isoforms following treatment of cells with insulin or platelet-derived growth factor (PDGF) and found that PKBbeta is preferentially expressed in both rat and 3T3-L1 adipocytes, whereas PKBalpha expression is down-regulated in 3T3-L1 adipocytes. A switch in growth factor response was also observed when 3T3-L1 fibroblasts were differentiated into adipocytes. While PDGF was more efficacious than insulin in stimulating PKB phosphorylation in fibroblasts, PDGF did not stimulate PKBbeta phosphorylation to any significant extent in adipocytes, as assessed by several methods. Moreover, insulin, but not PDGF, stimulated the translocation of PKBbeta to the plasma membrane and high-density microsome fractions of 3T3-L1 adipocytes. These results support a role for PKBbeta in insulin-stimulated glucose transport in adipocytes.  相似文献   
29.
Activation of endothelial cell NF-kappaB by interleukin (IL)-1 constitutes an event critical to the progression of the innate immune response. In this context, oxidants have been associated with NF-kappaB activation, although the molecular source and mechanism of targeting have remained obscure. We found that RelA, essential for NF-kappaB activation by IL-1, was associated with the NADPH oxidase adapter protein p47(phox) in yeast two-hybrid, coprecipitation, and in vitro binding studies. RelA and p47-GFP also colocalized in endothelial cells in focal submembranous dorsoventral protrusions. Overexpression of p47(phox) synergized with IL-1beta in the activation of an artificial kappaB-luciferase reporter and specifically augmented IL-1beta-induced RelA transactivation activity. p47(phox) overexpression also greatly increased IL-1beta-stimulated RelA phosphorylation, whereas it had no effect on I-kappaB degradation or on RelA nuclear translocation or kappaB binding. The tandem SH3 domains of p47(phox) were found to associate with a proline-rich mid-region of RelA (RelA-PR) located between the Rel homology and transactivation domains. The RelA-PR peptide blocked interaction of p47(phox) and RelA, and ectopic expression of RelA-PR abrogated IL-1beta-induced transactivation of the NF-kappaB-dependent E-selectin promoter. Further, suppression of NADPH oxidase function through the inhibitor diphenylene iodonium, the superoxide dismutase mimetic Mn(III) tetrakis(4-benzoic acid)porphyrin (MnTBAP), or expression of a dominant interfering mutant of a separate NADPH oxidase subunit (p67(V204A)) decreased IL-1beta-induced E-selectin promoter activation, suggesting that p47(phox) facilitates NF-kappaB activation through linkage with the NADPH oxidase. IL-1beta rapidly increased tyrosine phosphorylation of IL-1 type I receptor-associated proteins, suggesting that oxidants may operate through inactivation of local protein-tyrosine phosphatases in the proximal IL-1beta signaling pathway leading to RelA activation.  相似文献   
30.
Bean plants ( Phaseolus vulgaris ) were grown for 16–20 days with or without phosphate in Knop nutrient medium. It was found in previous experiments that for roots grown on a Pi-deficient medium respiration is mainly carried out by the cyanide-insensitive pathway. Mitochondria isolated from—Pi, roots had poor respiratory control and their respiration exhibited 62% inhibition by cyanide and was inhibited (30%) by salicylhydroxamic acid (SHAM). In contrast, mitochondria obtained with control (+Pi) roots had respiratory control and ADP/O ratios typical for succinate as the substrate; their respiration was inhibited to 95% by cyanide and insensitive to SHAM. The integrity of mitochondrial membranes was similar in both types of mitochondria. Cytochrome oxidase activity, however, was about 20% lower in -Pi mitochondria, but the cytochrome composition was the same in both types of mitochondria. The cytochrorae pathway was not operating at full capacity in mitochondria isolated from—Pi roots but the alternative oxidation pathway participated in a great part in mitochondrial respiration, similar to in vivo whole roots. The participation of the non-phosphorylating., alternative pathway decreased the respiratory control ratio in mitochondria and had an effect on the total adenine nucleotide pool and energy charge values which were lower (16 and 13% respectively) in -Pi roots. About 50% lower ADP and 20% lower ATP levels were observed whereas AMP levels were several times higher.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号