首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   485篇
  免费   42篇
  国内免费   1篇
  528篇
  2021年   7篇
  2020年   6篇
  2019年   8篇
  2018年   6篇
  2017年   6篇
  2016年   10篇
  2015年   16篇
  2014年   18篇
  2013年   14篇
  2012年   25篇
  2011年   24篇
  2010年   16篇
  2009年   11篇
  2008年   14篇
  2007年   15篇
  2006年   22篇
  2005年   15篇
  2004年   15篇
  2003年   11篇
  2002年   14篇
  2001年   14篇
  2000年   22篇
  1999年   9篇
  1998年   10篇
  1997年   4篇
  1996年   5篇
  1995年   4篇
  1994年   9篇
  1993年   5篇
  1992年   5篇
  1991年   8篇
  1990年   7篇
  1989年   10篇
  1988年   5篇
  1987年   4篇
  1986年   7篇
  1985年   9篇
  1984年   5篇
  1983年   4篇
  1982年   12篇
  1981年   8篇
  1980年   5篇
  1979年   10篇
  1978年   5篇
  1977年   4篇
  1976年   5篇
  1973年   7篇
  1972年   9篇
  1971年   4篇
  1968年   4篇
排序方式: 共有528条查询结果,搜索用时 0 毫秒
51.
52.
Mileni M  Haas AH  Mäntele W  Simon J  Lancaster CR 《Biochemistry》2005,44(50):16718-16728
Quinol:fumarate reductase (QFR) is the terminal enzyme of anaerobic fumarate respiration. This membrane protein complex couples the oxidation of menaquinol to menaquinone to the reduction of fumarate to succinate. Although the diheme-containing QFR from Wolinella succinogenes is known to catalyze an electroneutral process, its three-dimensional structure at 2.2 A resolution and the structural and functional characterization of variant enzymes revealed locations of the active sites that indicated electrogenic catalysis. A solution to this apparent controversy was proposed with the so-called "E-pathway hypothesis". According to this, transmembrane electron transfer via the heme groups is strictly coupled to a parallel, compensatory transfer of protons via a transiently established pathway, which is inactive in the oxidized state of the enzyme. Proposed constituents of the E-pathway are the side chain of Glu C180 and the ring C propionate of the distal heme. Previous experimental evidence strongly supports such a role of the former constituent. Here, we investigate a possible heme-propionate involvement in redox-coupled proton transfer by a combination of specific (13)C-heme propionate labeling and Fourier transform infrared (FTIR) difference spectroscopy. The labeling was achieved by creating a W. succinogenes mutant that was auxotrophic for the heme-precursor 5-aminolevulinate and by providing [1-(13)C]-5-aminolevulinate to the medium. FTIR difference spectroscopy revealed a variation on characteristic heme propionate vibrations in the mid-infrared range upon redox changes of the distal heme. These results support a functional role of the distal heme ring C propionate in the context of the proposed E-pathway hypothesis of coupled transmembrane electron and proton transfer.  相似文献   
53.
54.
A glycomic approach is developed to identify oligosaccharide markers for ovarian cancer by rapidly profiling globally released oligosaccharides. Glycoproteins shed by cancer cells are found in the supernatant (or conditioned media) of cultured cells. In this approach, shed glycoproteins are profiled for their oligosaccharide content using beta-elimination conditions. Changes in glycosylation are monitored by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS). Because shed glycoproteins would also be found in serum, similar glycan profiling was performed to observe potential oligosaccharide markers. Oligosaccharide profiling data on a limited set of patient and normal serum samples were studied to determine potential glycan markers in ovarian cancer. We were able to demonstrate the presence of at least 15 unique serum glycan markers in all patients but absent in normal individuals. To determine the structure of the glycan biomarkers, a number of the ions were isolated and further analyzed using infrared multiphoton dissociation (IRMPD). One major advantage of this approach is that glycans are examined directly from patient sera without the need to obtain cancer biopsy specimens or to purify glycosylated proteins from these specimens.  相似文献   
55.
Membrane protein complexes can support both the generation and utilisation of a transmembrane electrochemical proton potential ('proton-motive force'), either by transmembrane electron transfer coupled to protolytic reactions on opposite sides of the membrane or by transmembrane proton transfer. Here we provide the first evidence that both of these mechanisms are combined in the case of a specific respiratory membrane protein complex, the dihaem-containing quinol:fumarate reductase (QFR) of Wolinella succinogenes, so as to facilitate transmembrane electron transfer by transmembrane proton transfer. We also demonstrate the non-functionality of this novel transmembrane proton transfer pathway ('E-pathway') in a variant QFR where a key glutamate residue has been replaced. The 'E-pathway', discussed on the basis of the 1.78-Angstrom-resolution crystal structure of QFR, can be concluded to be essential also for the viability of pathogenic varepsilon-proteobacteria such as Helicobacter pylori and is possibly relevant to proton transfer in other dihaem-containing membrane proteins, performing very different physiological functions.  相似文献   
56.
Reconciliation of apparently contradictory experimental results obtained on the quinol: fumarate reductase (QFR), a dihaem-containing respiratory membrane protein complex from Wolinella succinogenes, was previously obtained by the proposal of the so-called E-pathway hypothesis. According to this hypothesis, transmembrane electron transfer via the haem groups is strictly coupled to co-transfer of protons via a transiently established, novel pathway, proposed to contain the side chain of residue Glu-C180 and the distal haem ring-C propionate as the most prominent components. This hypothesis has recently been supported by both theoretical and experimental results. Multiconformation continuum electrostatics calculations predict Glu-C180 to undergo a combination of proton uptake and conformational change upon haem reduction. Strong experimental support for the proposed role of Glu-C180 in the context of the “E-pathway hypothesis” is provided by the effects of replacing Glu-C180 with Gln or Ile by site-directed mutagenesis, the consequences of these mutations for the viability of the resulting mutants, together with the structural and functional characterisation of the corresponding variant enzymes, and the comparison of redox-induced Fourier-transform infrared (FTIR) difference spectra for the wild type and Glu-C180 → Gln variant. A possible haem propionate involvement has recently been supported by combining 13C-haem propionate labelling with redox-induced FTIR difference spectroscopy.  相似文献   
57.
Using in vitro drug sensitivity data coupled with Affymetrix microarray data, we developed gene expression signatures that predict sensitivity to individual chemotherapeutic drugs. Each signature was validated with response data from an independent set of cell line studies. We further show that many of these signatures can accurately predict clinical response in individuals treated with these drugs. Notably, signatures developed to predict response to individual agents, when combined, could also predict response to multidrug regimens. Finally, we integrated the chemotherapy response signatures with signatures of oncogenic pathway deregulation to identify new therapeutic strategies that make use of all available drugs. The development of gene expression profiles that can predict response to commonly used cytotoxic agents provides opportunities to better use these drugs, including using them in combination with existing targeted therapies.  相似文献   
58.
Cytochrome (cyt) b(561) proteins are dihaem-containing membrane proteins, belonging to the CYBASC (cytochrome-b(561)-ascorbate-reducible) family, and are proposed to be involved in ascorbate recycling and/or the facilitation of iron absorption. Here, we present the heterologous production of two cyt b(561) paralogs from Arabidopsis thaliana (Acytb(561)-A, Acytb(561)-B) in Escherichia coli and Pichia pastoris, their purification, and initial characterisation. Spectra indicated that Acytb(561)-A resembles the best characterised member of the CYBASC family, the cytochrome b(561) from adrenomedullary chromaffin vesicles, and that Acytb(561)-B is atypical compared to other CYBASC proteins. Haem oxidation-reduction midpoint potential (E(M)) values were found to be fully consistent with ascorbate oxidation activities and Fe(3+)-chelates reductase activities. The ascorbate dependent reduction and protein stability of both paralogs were found to be sensitive to alkaline pH values as reported for the cytochrome b(561) from chromaffin vesicles. For both paralogs, ascorbate-dependent reduction was inhibited and the low-potential haem E(M) values were affected significantly by incubation with diethyl pyrocarbonate (DEPC) in the absence of ascorbate. Modification with DEPC in the presence of ascorbate left the haem E(M) values unaltered compared to the unmodified proteins. However, ascorbate reduction was inhibited. We concluded that the ascorbate-binding site is located near the low-potential haem with the Fe(3+)-chelates reduction-site close to the high-potential haem. Furthermore, inhibition of ascorbate oxidation by DEPC treatment occurs not only by lowering the haem E(M) values but also by an additional modification affecting ascorbate binding and/or electron transfer. Analytical gel filtration experiments suggest that both cyt b(561) paralogs exist as homodimers.  相似文献   
59.
Cytochrome (cyt) b561 proteins are dihaem-containing membrane proteins, belonging to the CYBASC (cytochrome-b561-ascorbate-reducible) family, and are proposed to be involved in ascorbate recycling and/or the facilitation of iron absorption. Here, we present the heterologous production of two cyt b561 paralogs from Arabidopsis thaliana (Acytb561-A, Acytb561-B) in Escherichia coli and Pichia pastoris, their purification, and initial characterisation. Spectra indicated that Acytb561-A resembles the best characterised member of the CYBASC family, the cytochrome b561 from adrenomedullary chromaffin vesicles, and that Acytb561-B is atypical compared to other CYBASC proteins. Haem oxidation–reduction midpoint potential (EM) values were found to be fully consistent with ascorbate oxidation activities and Fe3 +-chelates reductase activities. The ascorbate dependent reduction and protein stability of both paralogs were found to be sensitive to alkaline pH values as reported for the cytochrome b561 from chromaffin vesicles. For both paralogs, ascorbate-dependent reduction was inhibited and the low-potential haem EM values were affected significantly by incubation with diethyl pyrocarbonate (DEPC) in the absence of ascorbate. Modification with DEPC in the presence of ascorbate left the haem EM values unaltered compared to the unmodified proteins. However, ascorbate reduction was inhibited. We concluded that the ascorbate-binding site is located near the low-potential haem with the Fe3 +-chelates reduction-site close to the high-potential haem. Furthermore, inhibition of ascorbate oxidation by DEPC treatment occurs not only by lowering the haem EM values but also by an additional modification affecting ascorbate binding and/or electron transfer. Analytical gel filtration experiments suggest that both cyt b561 paralogs exist as homodimers.  相似文献   
60.
Obesity is associated with a state of chronic low grade inflammation that plays an important role in the development of insulin resistance. Tumor progression locus 2 (Tpl2) is a serine/threonine mitogen activated protein kinase kinase kinase (MAP3K) involved in regulating responses to specific inflammatory stimuli. Here we have used mice lacking Tpl2 to examine its role in obesity-associated insulin resistance. Wild type (wt) and tpl2(-/-) mice accumulated comparable amounts of fat and lean mass when fed either a standard chow diet or two different high fat (HF) diets containing either 42% or 59% of energy content derived from fat. No differences in glucose tolerance were observed between wt and tpl2(-/-) mice on any of these diets. Insulin tolerance was similar on both standard chow and 42% HF diets, but was slightly impaired in tpl2(-/-) mice fed the 59% HFD. While gene expression markers of macrophage recruitment and inflammation were increased in the white adipose tissue of HF fed mice compared with standard chow fed mice, no differences were observed between wt and tpl2(-/-) mice. Finally, a HF diet did not increase Tpl2 expression nor did it activate Extracellular Signal-Regulated Kinase 1/2 (ERK1/2), the MAPK downstream of Tpl2. These findings argue that Tpl2 does not play a non-redundant role in obesity-associated metabolic dysfunction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号