首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1008篇
  免费   69篇
  2022年   10篇
  2021年   27篇
  2020年   14篇
  2019年   8篇
  2018年   14篇
  2017年   15篇
  2016年   24篇
  2015年   34篇
  2014年   43篇
  2013年   48篇
  2012年   64篇
  2011年   60篇
  2010年   28篇
  2009年   33篇
  2008年   41篇
  2007年   37篇
  2006年   38篇
  2005年   29篇
  2004年   28篇
  2003年   36篇
  2002年   26篇
  2001年   12篇
  2000年   28篇
  1999年   14篇
  1998年   9篇
  1997年   14篇
  1996年   10篇
  1995年   9篇
  1993年   15篇
  1992年   22篇
  1991年   11篇
  1990年   17篇
  1989年   14篇
  1988年   10篇
  1987年   13篇
  1986年   17篇
  1985年   16篇
  1984年   11篇
  1983年   14篇
  1982年   9篇
  1981年   9篇
  1980年   12篇
  1979年   9篇
  1978年   11篇
  1977年   7篇
  1976年   7篇
  1975年   13篇
  1968年   7篇
  1967年   7篇
  1966年   6篇
排序方式: 共有1077条查询结果,搜索用时 140 毫秒
81.
This study examined the response to nitric oxide (NO) in rat middle cerebral arteries (MCA). NO donors increased the activity of a 205-pS K(+) channel recorded from vascular smooth muscle (VSM) cells isolated from MCA 10-fold. Blockade of guanylyl cyclase activity with 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ, 10(-5) M) did not alter the effect of NO on this channel. In contrast, adding 20-hydroxyeicosatetraenoic acid (20-HETE) to the bath (10(-7) M) abolished the response to NO. NO donors also increased the diameter of serotonin-preconstricted MCA to 85% of control. Blockade of K(+) channels with iberiotoxin or a high-K(+) medium reduced this response by 50%. ODQ (10(-5) M) reduced this response by 47 +/- 3%, whereas preventing the fall of 20-HETE levels reduced the response by 59 +/- 2% (n = 5). Blockade of both pathways eliminated the response to NO donors. These results indicate that activation of K(+) channels contributes 50% to vasodilator response to NO in rat MCA. This is mediated by a fall in 20-HETE levels rather than a rise in cGMP levels or a direct effect of NO.  相似文献   
82.
Assessments of scoliosis are routinely done by means of clinical examination and full spinal x-rays. Multiple exposure to ionization radiation, however, can be hazardous to the child and is costly. Here, we explain the use of a noninvasive imaging technique, based on laser optical scanning, for quantifying the three-dimensional (3D) trunk surface topography that can be used to estimate parameters of 3D deformity of the spine. The laser optical scanning system consisted of four BIRIS laser cameras mounted on a ring moving along a vertical axis, producing a topographical mapping of the entire torso. In conjunction with the laser scans, an accurate 3D reconstruction of the spine and rib cage were developed from the digitized x-ray images. Results from 14 scoliotic patients are reported. The digitized surfaces provided the foundation data to start studying concordance of trunk surface asymmetry and spinal shape in idiopathic scoliosis.  相似文献   
83.
In a study of X-ray-induced chromosome aberrations in human G(0) lymphocytes irradiated with 4 Gy using premature chromosome condensation (PCC) and fluorescence in situ hybridization (FISH), the time-dependent pattern of chromosome fragments and interchromosomal exchanges involving chromosome 4 was recorded after postirradiation incubation times varying from 0.5 to 46.5 h. Unattached acentric fragments and incomplete interchromosomal exchanges have high initial yields, followed by an exponential decrease, while complete interchromosomal exchanges have almost zero initial yield with a subsequent increase in their number. Plateau values of all yields are reached after about 25 h. This temporal variation of aberration yields can consistently be explained by the competition of disruptive PCC stress with the progress of postirradiation structural restitution at the sites of radiation-induced chromatin instabilities. Details of the temporal pattern of incomplete exchanges reflect the different kinetics of the alpha and beta components of the yield of aberrations. The observed large difference between late-PCC and metaphase yields of unattached acentric fragments and the almost perfect conversion from incomplete prematurely condensed chromosomes into complete metaphase exchanges are explained by a difference in the magnitude of chromosome condensation stress between PCC and mitotic conditions. Chromatin sites prone to fragmentation and incompleteness under conditions of PCC can therefore persist as genetic instabilities hidden during mitosis.  相似文献   
84.
Lateral assemblies of glycolipids and cholesterol, “rafts,” have been implicated to play a role in cellular processes like membrane sorting, signal transduction, and cell adhesion. We studied the structure of raft domains in the plasma membrane of non-polarized cells. Overexpressed plasma membrane markers were evenly distributed in the plasma membrane. We compared the patching behavior of pairs of raft markers (defined by insolubility in Triton X-100) with pairs of raft/non-raft markers. For this purpose we cross-linked glycosyl-phosphatidylinositol (GPI)-anchored proteins placental alkaline phosphatase (PLAP), Thy-1, influenza virus hemagglutinin (HA), and the raft lipid ganglioside GM1 using antibodies and/or cholera toxin. The patches of these raft markers overlapped extensively in BHK cells as well as in Jurkat T–lymphoma cells. Importantly, patches of GPI-anchored PLAP accumulated src-like protein tyrosine kinase fyn, which is thought to be anchored in the cytoplasmic leaflet of raft domains. In contrast patched raft components and patches of transferrin receptor as a non-raft marker were sharply separated. Taken together, our data strongly suggest that coalescence of cross-linked raft elements is mediated by their common lipid environments, whereas separation of raft and non-raft patches is caused by the immiscibility of different lipid phases. This view is supported by the finding that cholesterol depletion abrogated segregation. Our results are consistent with the view that raft domains in the plasma membrane of non-polarized cells are normally small and highly dispersed but that raft size can be modulated by oligomerization of raft components.  相似文献   
85.
A novel series of 4-[3,5-dioxo-11-oxa-4,9-diazatricyclo[5.3.1.02,6]undec-4-yl]-2-trifluoromethyl-benzonitriles has been synthesized. The ability of these compounds to act as antagonists of the androgen receptor was investigated and several were found to have potent activity in vitro and in vivo.  相似文献   
86.
87.
Dengue virus (DENV) is the most common mosquito-transmitted virus infecting ~390 million people worldwide. In spite of this high medical relevance, neither a vaccine nor antiviral therapy is currently available. DENV elicits a strong interferon (IFN) response in infected cells, but at the same time actively counteracts IFN production and signaling. Although the kinetics of activation of this innate antiviral defense and the timing of viral counteraction critically determine the magnitude of infection and thus disease, quantitative and kinetic analyses are lacking and it remains poorly understood how DENV spreads in IFN-competent cell systems. To dissect the dynamics of replication versus antiviral defense at the single cell level, we generated a fully viable reporter DENV and host cells with authentic reporters for IFN-stimulated antiviral genes. We find that IFN controls DENV infection in a kinetically determined manner that at the single cell level is highly heterogeneous and stochastic. Even at high-dose, IFN does not fully protect all cells in the culture and, therefore, viral spread occurs even in the face of antiviral protection of naïve cells by IFN. By contrast, a vaccine candidate DENV mutant, which lacks 2’-O-methylation of viral RNA is profoundly attenuated in IFN-competent cells. Through mathematical modeling of time-resolved data and validation experiments we show that the primary determinant for attenuation is the accelerated kinetics of IFN production. This rapid induction triggered by mutant DENV precedes establishment of IFN-resistance in infected cells, thus causing a massive reduction of virus production rate. In contrast, accelerated protection of naïve cells by paracrine IFN action has negligible impact. In conclusion, these results show that attenuation of the 2’-O-methylation DENV mutant is primarily determined by kinetics of autocrine IFN action on infected cells.  相似文献   
88.
Several studies have shown that the human body generally conforms to the ecogeographical expectations of Bergmann's and Allen's rules; however, recent evidence suggests that these expectations may not hold completely for some populations. Egypt is located at the crossroads of Sub‐Saharan Africa, Southern Europe, and the Near East, and gene flow among groups in these regions may confound ecogeographical patterning. In this study, we test the fit of the adult physique of a large sample (N = 163) of females and males from the Kellis 2 cemetery (Dakhleh Oasis, Egypt) against ecogeographical predictions. Body shape (i.e., body mass relative to stature) was assessed by the femur head diameter to bicondylar femur length index (FHD/BFL), and brachial and crural indices were calculated to examine intralimb proportions. Body shape in the Kellis 2 sample is not significantly different from high‐latitude groups and a Lower Nubian sample, and intralimb proportions are not significantly different from mid‐latitude and other low‐latitude groups. This study demonstrates the potential uniqueness of body shape and intralimb proportions in an ancient Egyptian sample, and further highlights the complex relationship between ecogeographic patterning and adaptation. Am J Phys Anthropol 153:496–505, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   
89.
In the biogeography of microorganisms, the habitat size of an attached-living bacterium has never been investigated. We approached this theme with a multilocus sequence analysis (MLSA) study of new strains of Rhodopirellula sp., an attached-living planctomycete. The development of an MLSA for Rhodopirellula baltica enabled the characterization of the genetic diversity at the species level, beyond the resolution of the 16S rRNA gene. The alleles of the nine housekeeping genes acsA, guaA, trpE, purH, glpF, fumC, icd, glyA, and mdh indicated the presence of 13 genetically defined operational taxonomic units (OTUs) in our culture collection. The MLSA-based OTUs coincided with the taxonomic units defined by DNA-DNA hybridization experiments. BOX-PCR supported the MLSA-based differentiation of two closely related OTUs. This study established a taxon-area relationship of cultivable Rhodopirellula species. In European seas, three closely related species covered the Baltic Sea and the eastern North Sea, the North Atlantic region, and the southern North Sea to the Mediterranean. The last had regional genotypes, as revealed by BOX-PCR. This suggests a limited habitat size of attached-living Rhodopirellula species.The biogeography of microorganisms describes the habitat size of the species and the distribution of microorganisms on Earth. The experimental approaches depend on the focus of the studies. Habitats are often analyzed by environmental microbiologists with genetic-fingerprinting techniques, with up to 200 bands or fragments representing the whole community. Although the taxonomic resolution of these operational taxonomic units (OTUs) is limited, the studies revealed a community biogeography (22). Medical microbiologists analyze the alleles of housekeeping genes of microorganisms to gain insight into the epidemiology of pathogens, the population biogeography (2). This strain-specific, fine-scale taxonomic resolution within a species is well suited to observance of recent dispersal events. At the species level, multilocus sequence typing (MLST) and analysis (MLSA), which were developed for intraspecies and intragenus specific studies, respectively, consist of the sequences of several (at least seven) housekeeping gene fragments concatenated to an approximately 5-kilobase alignment (17). Recent MLSA studies revealed its applicability to marine isolates and the analysis of biogeographic patterns: Alteromonas macleodii isolates could be grouped in an epipelagic and an abyssal clade (6), and strains of Pseudomonas aeruginosa were genetically well separated into groups of coastal and oceanic origin (8). However, for Salinibacter ruber strains, biogeographical distinctness was not resolved in an MLSA study but showed allopatry in a metabolic analysis (31). Several studies used MLSA together with DNA-DNA hybridization (DDH) for the delineation of new species, e.g., for Vibrio and Ensifer spp. (20, 36).In the biogeography of microorganisms, the experimental proof of a local genetic evolution was first revealed at sample sites that were physically separated by over 18,000 km (39). Large populations and the small size of microbes have been considered as facilitators for dispersal over long distances, eventually establishing cosmopolitan microbial populations. On the other hand, the smallest spatial scale of a microbial species in an open system has not been investigated. Attached-living bacteria disperse only during a distinct, short time span in their lives. This limitation of the dispersal time stimulated this study of the biogeography of Rhodopirellula baltica in European seas.R. baltica is a planctomycete with typical morphological features. The peptidoglycanless bacteria have an intracellular compartmentation: the riboplasm with the nucleoid is separated by a membrane from the surrounding paryphoplasm. Cells attach with a holdfast substance to surfaces or, in culture, to themselves, forming typical rosettes. Proliferation occurs by budding, and offspring cells live free in the water column: they are motile with a flagellum until they settle on the sediment (4).Seventy recently isolated strains affiliated according to the 16S rRNA gene analysis with R. baltica SH1T as the closest validly described species (40). The 16S rRNA gene sequences do not offer sufficient information at the species level. A dissimilarity of the 16S rRNA genes of more than 3%, recently reduced to 1.3% (34, 35), indicates that the strains under consideration belong to two species. These thresholds yielded in our strain collection, according to an ARB-based calculation, five or eight operational taxonomic units besides the species R. baltica (40). For strains with highly identical sequences, whole-genome DDH experiments have to be performed to identify the affiliation to established species. Recently, multilocus sequence analyses have emerged as a possible alternative method. Our strain collection comprised many strains with a 16S rRNA gene sequence very closely related to that of R. baltica SH1T. To gain insight into the genetic identity of the isolates on the species level and the habitat sizes of the species, we developed a multilocus sequence analysis and applied it to the strain collection. The MLSA results were calibrated with a DDH study. The closely related strains were additionally characterized by BOX-PCR, a fingerprinting method (15). Transmission electron microscopy (EM) was performed on some isolates to support the identification as Planctomycetes and to visualize morphological differences between strains.  相似文献   
90.
We investigated self-adhesion between highly negatively charged aggrecan macromolecules extracted from bovine cartilage extracellular matrix by performing atomic force microscopy (AFM) imaging and single-molecule force spectroscopy (SMFS) in saline solutions. By controlling the density of aggrecan molecules on both the gold substrate and the gold-coated tip surface at submonolayer densities, we were able to detect and quantify the Ca2+-dependent homodimeric interaction between individual aggrecan molecules at the single-molecule level. We found a typical nonlinear sawtooth profile in the AFM force-versus-distance curves with a molecular persistence length of lp = 0.31 ± 0.04 nm. This is attributed to the stepwise dissociation of individual glycosaminoglycan (GAG) side chains in aggrecans, which is very similar to the known force fingerprints of other cell adhesion proteoglycan systems. After studying the GAG-GAG dissociation in a dynamic, loading-rate-dependent manner (dynamic SMFS) and analyzing the data according to the stochastic Bell-Evans model for a thermally activated decay of a metastable state under an external force, we estimated for the single glycan interaction a mean lifetime of τ = 7.9 ± 4.9 s and a reaction bond length of xβ = 0.31 ± 0.08 nm. Whereas the xβ-value compares well with values from other cell adhesion carbohydrate recognition motifs in evolutionary distant marine sponge proteoglycans, the rather short GAG interaction lifetime reflects high intermolecular dynamics within aggrecan complexes, which may be relevant for the viscoelastic properties of cartilage tissue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号