首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   328篇
  免费   29篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   1篇
  2017年   5篇
  2016年   3篇
  2015年   9篇
  2014年   11篇
  2013年   13篇
  2012年   24篇
  2011年   16篇
  2010年   12篇
  2009年   12篇
  2008年   11篇
  2007年   3篇
  2006年   6篇
  2005年   11篇
  2004年   7篇
  2003年   12篇
  2002年   12篇
  2001年   7篇
  2000年   9篇
  1999年   12篇
  1998年   4篇
  1996年   6篇
  1995年   4篇
  1994年   6篇
  1993年   7篇
  1992年   16篇
  1991年   8篇
  1990年   6篇
  1989年   11篇
  1988年   6篇
  1987年   6篇
  1986年   12篇
  1985年   3篇
  1984年   4篇
  1983年   4篇
  1982年   3篇
  1981年   7篇
  1980年   1篇
  1979年   10篇
  1978年   12篇
  1977年   4篇
  1976年   1篇
  1975年   1篇
  1974年   5篇
  1973年   1篇
  1969年   1篇
  1962年   1篇
排序方式: 共有357条查询结果,搜索用时 16 毫秒
91.
92.
The widely used partial synthesis of phospholipids via deacylation of naturally occurring phospholipids, followed by reacylation with fatty acid anhydrides, is accompanied by phosphoryl migration. The resulting mixture of α- and β-phospholipids was separated by short-column chromatography. Milder acylation procedures in which no phosphoryl migration occurs, were developed. 1,2-Dilinoleoyl-sn-glycero-3-phosphocholine was prepared in 50% yield by acylation of sn-glycero-3-phosphocholine (GPC) with N-linoleoylimidazole. Detailed NMR and infrared spectra of α- and β-phosphatidylcholines (PCs) and -ethanolamines (PEs) are reported and the differences between isomers discussed.  相似文献   
93.
94.
95.
96.
In an anesthetized, open-abdomen, canine model, the propagation pattern of the slow wave and its direction, velocity, amplitude, and frequency were investigated in the small intestine of 8 dogs. Electrical recordings were made using a 240-electrode array from 5 different sites, spanning the length of the small intestine. The majority of slow waves propagated uniformly and aborally (84%). In several cases, however, other patterns were found including propagation in the oral direction (11%) and propagation block (2%). In addition, in 69 cases (3%), a slow wave was initiated at a local site beneath the electrode array. Such peripheral pacemakers were found throughout the entire intestine. The frequency, velocity, and amplitude of slow waves were highest in the duodenum and gradually declined along the intestine reaching lowest values in the distal ileum (from 17.4+/-1.7 c/min to 12.2+/-0.7 c/min; 10.5+/-2.4 cm/s to 0.8+/-0.2 cm/s, and 1.20+/-0.35 mV to 0.31+/-0.10 mV, respectively; all p<0.001). Consequently, the wavelength of the slow wave was strongly reduced from 36.4+/-0.8 cm to 3.7 +/- 0.1 cm (p<0.001). We conclude that the patterns of slow wave propagation are usually, though not always, uniform in the canine small intestine and that the gradient in the wavelength will influence the patterns of local contractions.  相似文献   
97.
98.
The uptake of the nuclear waste product technetium-99 was studied in common duckweed (Lemna minor). In addition to measurements, a model involving two compartments in duckweed with different chemical forms of technetium was derived. The model was tested by chemical speciation, i.e. differentiating between reduced Tc-compounds and Tc(VII)O(4)(-). The TcO(4)(-) concentrations measured were in good agreement with those predicted by the model. Two processes determine technetium uptake: (1) transport of Tc(VII)O(4)(-) across the cell membrane, and (2) reduction of Tc(VII). The TcO(4)(-) concentration in duckweed reaches a steady state within 2 h while reduced Tc-compounds are stored, as a result of absence of release or re-oxidation processes. Bioaccumulation kinetic properties were derived by varying 99Tc concentration, temperature, nutrient concentrations, and light intensity. The reduction of technetium in duckweed was highly correlated with light intensity and temperature. At 25 degrees C the maximum reduction rate was observed at light intensities above 200 μmol m(-2) s(-1) while half of the maximum transformation rate was reached at 41 μmol m(-2) s(-1). Transport of TcO(4)(-) over the cell membrane requires about 9.4 kJ mol(-1), indicating an active transport mechanism. However, this mechanism behaved as first-order kinetics instead of Michaelis-Menten kinetics between 1x10(-14) and 2.5x10(-5) mol l(-1) TcO(4)(-). Tc uptake could not be inhibited by 10(-3) mol l(-1) nitrate, phosphate, sulphate or chloride.  相似文献   
99.
100.
In contrast to the mechanisms of segmental and peristaltic contractions in the small intestine, not much is known about the mechanism of pendular contractions. High-resolution electrical and mechanical recordings were performed from isolated segments of the rabbit ileum during pendular contractions. The electrical activities were recorded with 32 extracellular electrodes while motility was assessed simultaneously by video tracking the displacements of 20-40 serosal markers. The electrical activities consisted of slow waves, followed by spikes, that propagated in either the aboral or oral direction. The mechanical activity always followed the initial electrical activity, describing a contraction phase in one direction followed by a relaxation phase in the opposite direction. Pendular displacements were always in rhythm with the slow wave, whereas the direction of the displacements was dictated by the origin of the slow wave. If the slow wave propagated aborally, then the pendular displacement occurred in the oral direction, whereas if the slow wave propagated in the oral direction, then the displacement occurred in the aboral direction. In the case of more complex propagation patterns, such as in the area of pacemaking or collision, direction of displacements remained always opposite to the direction of the slow wave. In summary, the direction and pattern of propagation of the slow wave determine the rhythm and the direction of the pendular motility. The well-known variability in pendular movements is caused by the variability in the propagation of the underlying slow wave.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号