首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1238篇
  免费   95篇
  2022年   8篇
  2021年   16篇
  2020年   5篇
  2019年   14篇
  2018年   13篇
  2017年   9篇
  2016年   25篇
  2015年   30篇
  2014年   46篇
  2013年   73篇
  2012年   104篇
  2011年   92篇
  2010年   63篇
  2009年   43篇
  2008年   77篇
  2007年   72篇
  2006年   86篇
  2005年   76篇
  2004年   71篇
  2003年   69篇
  2002年   70篇
  2001年   14篇
  2000年   13篇
  1999年   16篇
  1998年   15篇
  1997年   8篇
  1996年   6篇
  1995年   13篇
  1994年   14篇
  1993年   12篇
  1992年   6篇
  1991年   16篇
  1990年   15篇
  1989年   13篇
  1988年   12篇
  1987年   3篇
  1986年   8篇
  1985年   8篇
  1984年   7篇
  1983年   7篇
  1982年   7篇
  1981年   9篇
  1980年   10篇
  1979年   3篇
  1978年   8篇
  1977年   5篇
  1976年   3篇
  1975年   4篇
  1974年   3篇
  1970年   3篇
排序方式: 共有1333条查询结果,搜索用时 78 毫秒
81.
The Eps15 homology (EH) domain was originally identified as a motif present in three copies at the NH2-termini of Eps15 and of the related molecule Eps15R. Both of these molecules are substrates for the tyrosine kinase activity of the epidermal growth factor receptor and hence the name 'Eps15 homology' or EH domain [Wong et al. (1994) Oncogene 9, 1591-1597; Wong et al. (1995) Proc. Natl. Acad. Sci. USA 92, 9530-9534; Fazioli et al. (1993) Mol. Cell. Biol. 13, 5814-5828] was derived. The motif was subsequently found in several proteins from yeast to nematode, thus establishing its evolutionary conservation. Initial studies with filter-binding assays and phage-displayed libraries demonstrated its protein:protein interaction abilities and identified specific ligands. Subsequently, structural analyses established the molecular bases of recognition between EH domains and cognate peptides. To date, several EH-containing and EH-binding proteins have been identified, which establish in the cell a network of protein:protein interactions, defined as the EH network. This network coordinates cellular functions connected with endocytosis, actin remodeling and intracellular transduction of signals.  相似文献   
82.
83.
84.
The p38 MAP kinase plays a crucial role in regulating the production of proinflammatory cytokines, such as tumor necrosis factor and interleukin-1. Blocking this kinase may offer an effective therapy for treating many inflammatory diseases. Here we report a new allosteric binding site for a diaryl urea class of highly potent and selective inhibitors against human p38 MAP kinase. The formation of this binding site requires a large conformational change not observed previously for any of the protein Ser/Thr kinases. This change is in the highly conserved Asp-Phe-Gly motif within the active site of the kinase. Solution studies demonstrate that this class of compounds has slow binding kinetics, consistent with the requirement for conformational change. Improving interactions in this allosteric pocket, as well as establishing binding interactions in the ATP pocket, enhanced the affinity of the inhibitors by 12,000-fold. One of the most potent compounds in this series, BIRB 796, has picomolar affinity for the kinase and low nanomolar inhibitory activity in cell culture.  相似文献   
85.
Activation of Akt, or protein kinase B, is frequently observed in human cancers. Here we report that Akt activation via overexpression of a constitutively active form or via the loss of PTEN can overcome a G(2)/M cell cycle checkpoint that is induced by DNA damage. Activated Akt also alleviates the reduction in CDC2 activity and mitotic index upon exposure to DNA damage. In addition, we found that PTEN null embryonic stem (ES) cells transit faster from the G(2)/M to the G(1) phase of the cell cycle when compared to wild-type ES cells and that inhibition of phosphoinositol-3-kinase (PI3K) in HEK293 cells elicits G(2) arrest that is alleviated by activated Akt. Furthermore, the transition from the G(2)/M to the G(1) phase of the cell cycle in Akt1 null mouse embryo fibroblasts (MEFs) is attenuated when compared to that of wild-type MEFs. These results indicate that the PI3K/PTEN/Akt pathway plays a role in the regulation of G(2)/M transition. Thus, cells expressing activated Akt continue to divide, without being eliminated by apoptosis, in the presence of continuous exposure to mutagen and accumulate mutations, as measured by inactivation of an exogenously expressed herpes simplex virus thymidine kinase (HSV-tk) gene. This phenotype is independent of p53 status and cannot be reproduced by overexpression of Bcl-2 or Myc and Bcl-2 but seems to counteract a cell cycle checkpoint mediated by DNA mismatch repair (MMR). Accordingly, restoration of the G(2)/M cell cycle checkpoint and apoptosis in MMR-deficient cells, through reintroduction of the missing component of MMR, is alleviated by activated Akt. We suggest that this new activity of Akt in conjunction with its antiapoptotic activity may contribute to genetic instability and could explain its frequent activation in human cancers.  相似文献   
86.
Rai is a recently identified member of the family of Shc-like proteins, which are cytoplasmic signal transducers characterized by the unique PTB-CH1-SH2 modular organization. Rai expression is restricted to neuronal cells and regulates in vivo the number of postmitotic sympathetic neurons. We report here that Rai is not a common substrate of receptor tyrosine kinases under physiological conditions and that among the analyzed receptors (Ret, epidermal growth factor receptor, and TrkA) it is activated specifically by Ret. Overexpression of Rai in neuronal cell lines promoted survival by reducing apoptosis both under conditions of limited availability of the Ret ligand glial cell line-derived neurotrophic factor (GDNF) and in the absence of Ret activation. Overexpressed Rai resulted in the potentiation of the Ret-dependent activation of phosphatidylinositol 3-kinase (PI3K) and Akt. Notably, increased Akt phosphorylation and PI3K activity were also found under basal conditions, e.g., in serum-starved neuronal cells. Phosphorylated and hypophosphorylated Rai proteins form a constitutive complex with the p85 subunit of PI3K: upon Ret triggering, the Rai-PI3K complex is recruited to the tyrosine-phosphorylated Ret receptor through the binding of the Rai PTB domain to tyrosine 1062 of Ret. In neurons treated with low concentrations of GDNF, the prosurvival effect of Rai depends on Rai phosphorylation and Ret activation. In the absence of Ret activation, the prosurvival effect of Rai is, instead, phosphorylation independent. Finally, we showed that overexpression of Rai, at variance with Shc, had no effects on the early peak of mitogen-activated protein kinase (MAPK) activation, whereas it increased its activation at later time points. Phosphorylated Rai, however, was not found in complexes with Grb2. We propose that Rai potentiates the MAPK and PI3K signaling pathways and regulates Ret-dependent and -independent survival signals.  相似文献   
87.
We describe the computation of a model of the thermophilic NAD-dependent homotetrameric alcohol dehydrogenase from the archaeon Sulfolobus solfataricus (SsADH). Modeling is based on the knowledge that each monomer contains two Zn ions with catalytic and structural function, respectively. In the database of known structures, proteins with similar functions are either dimers containing two zinc ions per monomer or tetramers with one zinc ion per monomer. In any case, the sequence identity of the target to the possible templates is low. A threading procedure is therefore developed which includes constraints taking into account residue conservation both at the zinc ion binding and at the monomer-monomer interaction sites in the tetrameric unit. The model is consistent with previously reported data. Furthermore, cross-linking experiments are described which support the computed tetrameric model.  相似文献   
88.
89.
Glutathione is one of the most relevant antioxidants present in cells. It exerts its scavenging action through the involvement of efficient and ubiquitous enzymes. GSH on the other hand, because of its chemical features, can scavenge reactive oxygen species without the involvement of enzymatic systems. The study deals with the mobilization of GSH pool in a nonenzymatic antioxidant system by other physiological thiols (i.e., cysteine and cysteinyl-glycine), which are far more sensitive than GSH to oxidative conditions. These thiol compounds, in the presence of iron/EDTA, can promote oxygen activation through their oxidation to disulfides. GSH, through trans-thiolation reactions, can regenerate Cys and CysGly, which can then recycle, thus inducing a massive GSH oxidation. In these conditions, making use of bovine lens aldose reductase as a protein model, evidence is given that Cys and CysGly promote specific protein S-thiolation reactions. The possibility that GSH may be recruited in controlling cellular oxygen tension is considered.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号