首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   5篇
  2021年   2篇
  2020年   3篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   7篇
  2013年   5篇
  2012年   5篇
  2011年   4篇
  2010年   3篇
  2009年   5篇
  2008年   9篇
  2007年   13篇
  2006年   4篇
  2005年   7篇
  2004年   7篇
  2003年   1篇
  2002年   4篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1992年   7篇
  1991年   7篇
  1990年   3篇
  1989年   7篇
  1988年   10篇
  1987年   3篇
  1986年   5篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1973年   2篇
  1971年   1篇
排序方式: 共有166条查询结果,搜索用时 937 毫秒
101.
The interaction of cholesterol with phospholipids has been studied with a variety of techniques; however, the possible consequences of such interactions in vivo have not been demonstrated. In this study, the cholesterol-dependent absorbance spectrum of cytochrome P-450scc was used to monitor cholesterol availability in both micellar and vesicular environments. By use of this approach, in conjunction with titration of putative cholesterol binding species, a tight, approximately equimolar complex of cholesterol and digitonin was demonstrated. Sphingomyelin (SM) (both the synthetic N-palmitoyl and bovine brain forms) gave sigmoidal titration curves, suggesting a cooperative interaction between this lipid and cholesterol. The interaction of bovine brain glycerolipids and cholesterol was weaker than that of SM and showed no cooperativity. The importance of the phospholipid head group in these interactions was established by the differences in the ability of synthetic 1-palmitoyl-2-oleoylphosphatidylcholine, -phosphatidylethanolamine, and -phosphatidylserine to affect cholesterol availability. Comparison of these results with those of the bovine brain phospholipids indicates that the acyl chain composition of these molecules is also important to these interactions. Titrations of SM in phospholipid vesicles containing cytochrome P-450scc and different types of phosphatidylcholine established that the SM-cholesterol interactions also occur in a bilayer membrane. This study demonstrates that the association of cholesterol with cytochrome P-450scc is inhibited by concentrations of SM commonly found in biological membranes. Therefore, such cholesterol-lipid interactions can potentially affect the function of membrane enzymes.  相似文献   
102.
Anaerobic reduction of the flavoprotein adrenodoxin reductase with NADPH yields a spectrum with long wavelength absorbance, 750 nm and higher. No EPR signal is observed. This spectrum is produced by titration of oxidized adrenodoxin reductase with NADPH, or of dithionite-reduced adrenodoxin reductase with NADP+. Both titrations yield a sharp endpoint at 1 NADP(H) added per flavin. Reduction with other reductants, including dithionite, excess NADH, and catalytic NADP+ with an NADPH generating system, yields a typical fully reduced flavin spectrum, without long wavelength absorbance. The species formed on NADPH reduction appears to be a two-electron-containing complex, with a low dissociation constant, between reduced adrenodoxin reductase and NADP+, designated ARH2-NADP+. Titration of dithionite-reduced adrenodoxin reductase with NADPH also produces a distinctive spectrum, with a sharp endpoint at 1 NADPH added per reduced flavin, indicating formation of a four-electron-containing complex between reduced adrenodoxin reductase and NADPH. Titration of adrenodoxin reductase with NADH, instead of NADPH, provides a curved titration plot rather than the sharp break seen with NADPH, and permits calculation of a potential for the AR/ARH2 couple of -0.291 V, close to that of NAD(P)H (-0.316 V). Oxidized adrenodoxin reductase binds NADP+ much more weakly (Kdiss=1.4 X 10(-5) M) than does reduced adrenodoxin reductase, with a single binding site. The preferential binding of NADP+ to reduced enzyme permits prediction of a more positive oxidation-reduction potential of the flavoprotein in the presence of NADP+; a change of about + 0.1 V has been demonstrated by titration with safranine T. From this alteration in potential, a Kdiss of 1.0 X 10(-8) M for binding of NADP+ to reduced adrenodoxin reductase is calculated. It is concluded that the strong binding of NADP+ to reduced adrenodoxin reductase provides the thermodynamic driving force for formation of a fully reduced flavoprotein form under conditions wherein incomplete reduction would otherwise be expected. Stopped flow studies demonstrate that reduction of adrenodoxin reductase by equimolar NADPH to form the ARH2-NADP+ complex is first order (k=28 s-1). When a large excess of NADPH is used, a second apparently first order process is observed (k=4.25 s-1), which is interpreted as replacement of NADPH for NADP+ in the ARH2-NADP+ complex. Comparison of these rate constants to catalytic flavin turnover numbers for reduction of various oxidants by NADPH, suggests an ordered sequential mechanism in which reduction of oxidant is accomplished by the ARH2-NADP+ complex, followed by dissociation of NADP+. The absolute dependence of NADPH-cytochrome c reduction on both adrenodoxin reductase and adrenodoxin is confirmed...  相似文献   
103.
The chicken embryo has long been a useful model organism for studying development, including sex determination and gonadal differentiation. However, manipulating gene expression specifically in the embryonic avian gonad has been difficult. The viral vector RCASBP can be readily used for embryo-wide transgene expression; however global mis-expression using this method can cause deleterious off-target effects and embryo-lethality. In an attempt to develop vectors for the over-expression of sequences in chicken embryonic urogenital tissues, the viral vector RCANBP was engineered to contain predicted promoter sequences of gonadal-expressed genes. Several promoters were analysed and it was found that although the SF1 promoter produced a tissue-restricted expression pattern that was highest in the mesonephros and liver, it was also higher in the gonads compared to the rest of the body. The location of EGFP expression from the SF1 promoter overlapped with several key gonad-expressed sex development genes; however expression was generally low-level and was not seen in all gonadal cells. To further validate this sequence the key testis determinant DMRT1 was over-expressed in female embryos, which due to insufficient levels had no effect on gonad development. The female gene aromatase was then over-expressed in male embryos, which disrupted the testis pathway as demonstrated by a reduction in AMH protein. Taken together, although these data showed that the SF1 promoter can be used for functional studies in ovo, a stronger promoter sequence would likely be required for the functional analysis of gonad genes that require high-level expression.  相似文献   
104.
We have utilized 11beta-hydroxylase activity and visible absorption spectrophotometry to detect possible complex formation among adrenodoxin reductase, adrenodoxin, and cytochrome P-450(11)beta. At low ionic strength, a 1:1 complex between adrenodoxin reductase and adrenodoxin occurs but does not support maximal rates of 11beta hydroxylation; at least 1 additional molecule of adrenodoxin in excess of the 1:1 complex is required for full hydroxylase activity. Spectrophotometric titration of a mixture of adrenodoxin reductase and cytochrome P-450(11)beta with adrenodoxin indicates sequential formation of 1:1 complexes between adrenodoxin reductase and adrenodoxin and then between a second adrenodoxin and cytochrome P-450(11beta; the adrenodoxin-cytochrome P-450(11)beta complex is only detectable when the concentration of adrenodoxin exceeds that of adrenodoxin reductase.  相似文献   
105.
106.
107.
108.
High molecular weight homologues of gp91phox, the superoxide-generating subunit of phagocyte nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase, have been identified in human (h) and Caenorhabditis elegans (Ce), and are termed Duox for "dual oxidase" because they have both a peroxidase homology domain and a gp91phox domain. A topology model predicts that the enzyme will utilize cytosolic NADPH to generate reactive oxygen, but the function of the ecto peroxidase domain was unknown. Ce-Duox1 is expressed in hypodermal cells underlying the cuticle of larval animals. To investigate function, RNA interference (RNAi) was carried out in C. elegans. RNAi animals showed complex phenotypes similar to those described previously in mutations in collagen biosynthesis that are known to affect the cuticle, an extracellular matrix. Electron micrographs showed gross abnormalities in the cuticle of RNAi animals. In cuticle, collagen and other proteins are cross-linked via di- and trityrosine linkages, and these linkages were absent in RNAi animals. The expressed peroxidase domains of both Ce-Duox1 and h-Duox showed peroxidase activity and catalyzed cross-linking of free tyrosine ethyl ester. Thus, Ce-Duox catalyzes the cross-linking of tyrosine residues involved in the stabilization of cuticular extracellular matrix.  相似文献   
109.
Data collected from NHPs that are trained to participate voluntarily in husbandry, veterinary, and research procedures are likely to have particular value. The authors present the results of a series of studies that examined the effects of PRT on the performance by chimpanzees of a variety of biomedically relevant behaviors: presenting their perineum for pinworm testing, providing a semen sample, presenting for an s.c. injection, and presenting for an i.m. injection. The overall trends across studies indicate that PRT techniques have significant value in the handling and management of NHPs in many laboratory research settings, including less variability in the data collected and fewer potential confounding variables, which should lead to important refinements in the definition of NHPs as biomedical research models.  相似文献   
110.
Detergent-solubilized and purified rabbit liver microsomal NADPH-cytochrome P-450 reductase and cytochrome b5 were coreconstituted into phospholipid vesicles. When the proteoliposomes were incubated with a water-soluble carbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), a new higher-molecular-weight band was seen by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The band was purified by chromatography on DEAE-Sepharose CL-6B, 2'5'-ADP-Sepharose 4B, and Sephadex G-100. The heme absorption spectrum and fluorophotometric assay of flavin of the purified material demonstrate that this product is a 1:1 crosslinked complex containing one molecule each of the flavoprotein and cytochrome. Proteolysis of the crosslinked form indicates that the hydrophilic catalytic domains participate in the covalent attachment, and that the hydrophobic membrane-attachment peptide is necessary for the protein interaction. The purified crosslinked derivative showed no activities for reduction of either cytochrome c or ferricyanide. About half of the enzyme-associated flavin was reduced rapidly by NADPH, as was 20-30% of the crosslinked cytochrome, indicating that, in at least some of the complexes, the flavin-mediated pathway for reduction of cytochrome by pyridine nucleotide was intact. These data suggest that the output- rather than the input-electron transfer site(s) in the flavoprotein was (were) blocked by the covalently attached cytochrome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号