首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1172篇
  免费   221篇
  2021年   15篇
  2019年   12篇
  2018年   18篇
  2017年   16篇
  2016年   19篇
  2015年   34篇
  2014年   26篇
  2013年   74篇
  2012年   51篇
  2011年   53篇
  2010年   30篇
  2009年   36篇
  2008年   61篇
  2007年   61篇
  2006年   51篇
  2005年   44篇
  2004年   34篇
  2003年   44篇
  2002年   40篇
  2001年   35篇
  2000年   53篇
  1999年   38篇
  1998年   32篇
  1997年   26篇
  1996年   21篇
  1995年   18篇
  1994年   17篇
  1993年   12篇
  1992年   32篇
  1991年   30篇
  1990年   35篇
  1989年   24篇
  1988年   28篇
  1987年   21篇
  1986年   24篇
  1985年   20篇
  1984年   11篇
  1983年   15篇
  1982年   16篇
  1981年   8篇
  1980年   10篇
  1979年   15篇
  1978年   14篇
  1977年   12篇
  1976年   9篇
  1975年   13篇
  1973年   6篇
  1968年   8篇
  1967年   7篇
  1966年   6篇
排序方式: 共有1393条查询结果,搜索用时 15 毫秒
991.
Invasive species can drive native organisms to extinction by limiting movement and accessibility to essential resources. The purpose of this study was to determine if zebra mussels (Dreissena polymorpha) affect the burrowing ability and growth rate of a native snail, Campeloma decisum. Snails with and without zebra mussels were collected from Douglas Lake, MI, and burrowing depths were studied in both the laboratory and Douglas Lake. Growth rates were calculated as the amount of shell growth from 2004 to 2005. Both the tendency of snails to burrow and the depth to which they burrowed into the substrate were significantly decreased by the presence of zebra mussels on snail shells in both laboratory and lake experiments. There was no difference in the percentage of snails that exhibited growth as a function of zebra mussel presence. However, for those snails that grew, there was a 50% higher growth rate for snails without zebra mussels compared to snails with zebra mussels. These negative effects of zebra mussels on growth and burrowing ability will likely lead to decreases in snail population densities in the future. Handling editor: S. Wellekens  相似文献   
992.
A series of benzimidazole-based inhibitors of respiratory syncytial virus (RSV) fusion were optimized for antiviral potency, membrane permeability and metabolic stability in human liver microsomes. 1-Cyclopropyl-1,3-dihydro-3-[[1-(4-hydroxybutyl)-1H-benzimidazol-2-yl]methyl]-2H-imidazo[4,5-c]pyridin-2-one (6m, BMS-433771) was identified as a potent RSV inhibitor demonstrating good bioavailability in the mouse, rat, dog and cynomolgus monkey that demonstrated antiviral activity in the BALB/c and cotton rat models of infection following oral administration.  相似文献   
993.
This study examines the direct chemical defensive role of maltol, a previously identified secondary metabolite found in balsam fir, Abies balsamea (L.) Mill. (Pinaceae), that was detected during herbivory of spruce budworm, Choristoneura fumiferana (Clemens) (Lepidoptera: Tortricidae). Although used extensively in many industries, in addition to being found in multiple plant species, its functional role in plants remains unknown. The objectives of this study were to quantify the amount of free maltol and its potential conjugated form, maltol glucoside, in various foliage age classes and to evaluate whether constitutive foliage levels of maltol have an impact on spruce budworm fitness in maltol supplementation assays. Gas chromatography–mass spectrometry (GC‐MS) analysis of balsam fir foliage showed that maltol is produced in all foliage age classes tested; however, concentrations were significantly higher in older foliage. Liquid chromatography–mass spectrometry–mass spectrometry (LC‐MS‐MS) analysis showed that maltol also exists in balsam fir in its glucosylated form, a unique discovery in conifers. Similar to maltol, maltol glucoside is also present in current and 1‐year‐old balsam fir foliage and in significantly higher concentration in older foliage. We investigated the impact of maltol‐treated diet on spruce budworm fitness. Maltol additions that reflected constitutive foliage concentrations caused a significant reduction in larval development rate and pupal mass, whereas higher concentrations were required to cause significant mortality. These results suggest that maltol may be an important component of a direct defense strategy in balsam fir against spruce budworm herbivory.  相似文献   
994.
Molecular Biology Reports - Peanut (Arachis hypogaea L.) is an important food and oilseed crop worldwide. Yield and quality can be significantly reduced by foliar fungal diseases, such as early and...  相似文献   
995.

Background

Genetic variants of the Triggering Receptor Expressed on Myeloid Cells-2 (TREM2) confer increased risk of developing late-onset Alzheimer’s Disease (LOAD) and other neurodegenerative disorders. Recent studies provided insight into the multifaceted roles of TREM2 in regulating extracellular β-amyloid (Aβ) pathology, myeloid cell accumulation, and inflammation observed in AD, yet little is known regarding the role of TREM2 in regulating intracellular microtubule associated protein tau (MAPT; tau) pathology in neurodegenerative diseases and in AD, in particular.

Results

Here we report that TREM2 deficiency leads to accelerated and exacerbated hyperphosphorylation and aggregation of tau in a humanized mouse model of tauopathy. TREM2 deficiency also results, indirectly, in dramatic widespread dysregulation of neuronal stress kinase pathways.

Conclusions

Our results suggest that deficiency of microglial TREM2 leads to heightened tau pathology coupled with widespread increases in activated neuronal stress kinases. These findings offer new insight into the complex, multiple roles of TREM2 in regulating Aβ and tau pathologies.
  相似文献   
996.
D G Roberts  M R Lamb  C L Dieckmann 《Genetics》2001,158(3):1037-1049
The unicellular biflagellate green alga Chlamydomonas reinhardtii can perceive light and respond by altering its swimming behavior. The eyespot is a specialized structure for sensing light, which is assembled de novo at every cell division from components located in two different cellular compartments. Photoreceptors and associated signal transduction components are localized in a discrete patch of the plasma membrane. This patch is tightly packed against an underlying sandwich of chloroplast membranes and carotenoid-filled lipid granules, which aids the cell in distinguishing light direction. In a prior screen for mutant strains with eyespot defects, the EYE2 locus was defined by the single eye2-1 allele. The mutant strain has no eyespot by light microscopy and has no organized carotenoid granule layers as judged by electron microscopy. Here we demonstrate that the eye2-1 mutant is capable of responding to light, although the strain is far less sensitive than wild type to low light intensities and orients imprecisely. Therefore, pigment granule layer assembly in the chloroplast is not required for photoreceptor localization in the plasma membrane. A plasmid-insertion mutagenesis screen yielded the eye2-2 allele, which allowed the isolation and characterization of the EYE2 gene. The EYE2 protein is a member of the thioredoxin superfamily. Site-directed mutagenesis of the active site cysteines demonstrated that EYE2 function in eyespot assembly is redox independent, similar to the auxiliary functions of other thioredoxin family members in protein folding and complex assembly.  相似文献   
997.
Gene silencing of phenylalanine ammonia-lyase (PAL) in transgenic tobacco ( Nicotiana tabacum L.) is manifested phenotypically by reduced growth, altered leaf morphology, and reduced levels of phenylpropanoid compounds. Here we report the rare event of somatic reversion from silencing to PAL over-expression in tobacco harboring the bean PAL2 gene. This phenomenon allows the comparison of the effects of PAL under- and over-expression in the same plant. A comparison of gene silenced and revertant tissues reveals striking differences in lignin content and monomer composition, and both qualitative and quantitative differences in soluble and cell wall bound phenylpropanoid compounds in the recovered sector.  相似文献   
998.
Intracytoplasmic sperm injection (ICSI) has been used in combination with testicular sperm extraction to achieve pregnancies in couples with severe male-factor infertility, yet many of the underlying genetic mechanisms remain largely unknown. To investigate nondisjunction in mitotic and meiotic germ cells, we performed three-color FISH to detect numeric chromosome aberrations in testicular tissue samples from infertile men confirmed to have impaired spermatogenesis of unknown cause. FISH was employed to determine the rate of sex-chromosome aneuploidy in germ cells. Nuclei were distinguished as haploid or diploid, respectively. The overall incidence of sex-chromosome aneuploidy in germ cells was found to be significantly higher (P<.00001) in all three abnormal histopathologic patterns (range 39.0%-43.5%) as compared with normal controls (29.1%). The relative ratio of normal to aneuploid nuclei in the diploid cells of patients with impaired spermatogenesis was approximately 1.0, a >300% decrease when compared with the 4.42 ratio detected in patients with normal spermatogenesis. These results provide direct evidence of an increased incidence of sex-chromosome aneuploidy observed in germ cells of men with severely impaired spermatogenesis who might be candidates for ICSI with sperm obtained directly from the testis. The incidence of aneuploidy was significantly greater among the diploid nuclei, which suggests that chromosome instability is a result of altered genetic control during mitotic cell division and proliferation during spermatogenesis.  相似文献   
999.
Fluconazole selectively inhibits fungal sterol 14alpha-demethylase, a cytochrome P450 enzyme found in plants, animals, fungi, and Mycobacteria. The mutation G464S, observed in the heme-binding domain of sterol 14alpha-demethylase in clinical strains of fluconazole-resistant Candida albicans, is shown here to cause resistance through substantially reducing the inhibitory effect of fluconazole and is associated with perturbation of the heme environment as indicated by spectral data. The protein exhibits 42% of the maximal enzymatic rate of the wild-type protein allowing continued production of the end product of fungal sterol biosynthesis, ergosterol, in resistant strains. This mutation may cause these phenotypes through altering the heme location, thus changing the ability of residues above the heme to bind the drug effectively. This perturbation would also account for the observation of reduced sterol demethylase catalytic activity by changing the location of the 14alpha-methyl group in relation to oxygen-bound heme during the catalytic cycle.  相似文献   
1000.
A L Lamb  M E Newcomer 《Biochemistry》1999,38(19):6003-6011
Retinoic acid, a hormonally active form of vitamin A, is produced in vivo in a two step process: retinol is oxidized to retinal and retinal is oxidized to retinoic acid. Retinal dehydrogenase type II (RalDH2) catalyzes this last step in the production of retinoic acid in the early embryo, possibly producing this putative morphogen to initiate pattern formation. The enzyme is also found in the adult animal, where it is expressed in the testis, lung, and brain among other tissues. The crystal structure of retinal dehydrogenase type II cocrystallized with nicotinamide adenine dinucleotide (NAD) has been determined at 2.7 A resolution. The structure was solved by molecular replacement using the crystal structure of a mitochondrial aldehyde dehydrogenase (ALDH2) as a model. Unlike what has been described for the structures of two aldehyde dehydrogenases involved in the metabolism of acetaldehyde, the substrate access channel is not a preformed cavity into which acetaldehyde can readily diffuse. Retinal dehydrogenase appears to utilize a disordered loop in the substrate access channel to discriminate between retinaldehyde and short-chain aldehydes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号