首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1226篇
  免费   227篇
  1453篇
  2022年   8篇
  2021年   22篇
  2020年   7篇
  2019年   12篇
  2018年   20篇
  2017年   16篇
  2016年   22篇
  2015年   36篇
  2014年   27篇
  2013年   74篇
  2012年   56篇
  2011年   56篇
  2010年   29篇
  2009年   40篇
  2008年   62篇
  2007年   63篇
  2006年   53篇
  2005年   45篇
  2004年   34篇
  2003年   43篇
  2002年   42篇
  2001年   37篇
  2000年   55篇
  1999年   39篇
  1998年   40篇
  1997年   28篇
  1996年   23篇
  1995年   17篇
  1994年   16篇
  1993年   12篇
  1992年   32篇
  1991年   30篇
  1990年   35篇
  1989年   24篇
  1988年   28篇
  1987年   21篇
  1986年   25篇
  1985年   20篇
  1984年   11篇
  1983年   15篇
  1982年   18篇
  1981年   8篇
  1980年   9篇
  1979年   15篇
  1978年   12篇
  1977年   14篇
  1976年   11篇
  1975年   13篇
  1968年   8篇
  1967年   7篇
排序方式: 共有1453条查询结果,搜索用时 10 毫秒
161.
162.

Background

Attention Deficit Hyperactivity Disorder, commonly referred to as ADHD, is a common, complex, predominately genetic but highly treatable disorder, which in its more severe form has such a profound effect on brain function that every aspect of the life of an affected individual may be permanently compromised. Despite the broad base of scientific investigation over the past 50 years supporting this statement, there are still many misconceptions about ADHD. These include believing the disorder does not exist, that all children have symptoms of ADHD, that if it does exist it is grossly over-diagnosed and over-treated, and that the treatment is dangerous and leads to a propensity to drug addiction. Since most misconceptions contain elements of truth, where does the reality lie?

Results

We have reviewed the literature to evaluate some of the claims and counter-claims. The evidence suggests that ADHD is primarily a polygenic disorder involving at least 50 genes, including those encoding enzymes of neurotransmitter metabolism, neurotransmitter transporters and receptors. Because of its polygenic nature, ADHD is often accompanied by other behavioral abnormalities. It is present in adults as well as children, but in itself it does not necessarily impair function in adult life; associated disorders, however, may do so. A range of treatment options is reviewed and the mechanisms responsible for the efficacy of standard drug treatments are considered.

Conclusion

The genes so far implicated in ADHD account for only part of the total picture. Identification of the remaining genes and characterization of their interactions is likely to establish ADHD firmly as a biological disorder and to lead to better methods of diagnosis and treatment.
  相似文献   
163.
Intracellular retention of caveolin 1 in presenilin-deficient cells   总被引:2,自引:0,他引:2  
Mutations in genes encoding presenilins (PS1 and PS2) are responsible for the majority of early onset familial Alzheimer's disease. PS, a critical component of gamma-secretase, is responsible for the intramembranous cleavage of amyloid precursor protein and Notch. Other physiological functions have been assigned to PS without any clear identification of the mechanisms underlying these multiple biological roles. The early embryonic lethality of PS1 and PS2 double knock-out (PS1/2 null) mice prevents the evaluation of physiological roles of PS. To investigate new functions for presenilins, we performed a proteomic approach by using cells derived from PS1/2 null blastocysts and wild type controls. We identified a presenilin-dependent cell-surface binding of albumin. Binding of albumin depends on intact caveolae on the cellular surface. Abnormal caveolin 1 localization in PS1/2 null cells was associated with a loss of caveolae and an absence of caveolin 1 expression within lipid rafts. Expressing PS1 or PS2 but not the intracellular form of Notch1 in PS1/2 null cells restored normal caveolin 1 localization, demonstrating that presenilins are required for the subcellular trafficking of caveolin 1 independently from Notch activity. Despite an expression of both caveolin 1 and PS1 within lipid raft-enriched fractions after sucrose density centrifugation in wild type cells, no direct interaction between these two proteins was detected, implying that presenilins affect caveolin 1 trafficking in an indirect manner. We conclude that presenilins are required for caveolae formation by controlling transport of intracellular caveolin 1 to the plasma membrane.  相似文献   
164.
The influenza virus M2 proton-selective ion channel activity facilitates virus uncoating, a process that occurs in the acidic environment of the endosome. The M2 channel causes acidification of the interior of the virus particle, which results in viral protein-protein dissociation. The M2 protein is a homotetramer that contains in its aqueous pore a histidine residue (His-37) that acts as a selectivity filter and a tryptophan residue (Trp-41) that acts as a channel gate. Substitution of His-37 modifies M2 ion channel properties drastically. However, the results of such experiments are difficult to interpret because substitution of His-37 could cause gross structural changes to the channel pore. We described here experiments in which partial or, in some cases, full rescue of specific M2 ion channel properties of His-37 substitution mutants was achieved by addition of imidazole to the bathing medium. Chemical rescue was demonstrated for three histidine substitution mutant ion channels (M2-H37G, M2-H37S, and M2-H37T) and for two double mutants in which the Trp-41 channel gate was also mutated (H37G/W41Y and H37G/W41A). Currents of the M2-H37G mutant ion channel were inhibited by Cu(II), which has been shown to coordinate with His-37 in the wild-type channel. Chemical rescue was very specific for imidazole. Buffer molecules that were neutral when protonated (4-morpholineethanesulfonic acid and 3-morpholino-2-hydroxypropanesulfonic acid) did not rescue ion channel activity of the M2-H37G mutant ion channel, but 1-methylimidazole did provide partial rescue of function. These results were consistent with a model for proton transport through the pore of the wild-type channel in which the imidazole side chain of His-37 acted as an intermediate proton acceptor/donor group.  相似文献   
165.
Page AM  Aneliunas V  Lamb JR  Hieter P 《Genetics》2005,170(3):1045-1062
We have examined the in vivo requirement of two recently identified nonessential components of the budding yeast anaphase-promoting complex, Swm1p and Mnd2p, as well as that of the previously identified subunit Apc9p. swm1Delta mutants exhibit synthetic lethality or conditional synthetic lethality with other APC/C subunits and regulators, whereas mnd2Delta mutants are less sensitive to perturbation of the APC/C. swm1Delta mutants, but not mnd2Delta mutants, exhibit defects in APC/C substrate turnover, both during the mitotic cell cycle and in alpha-factor-arrested cells. In contrast, apc9Delta mutants exhibit only minor defects in substrate degradation in alpha-factor-arrested cells. In cycling cells, degradation of Clb2p, but not Pds1p or Clb5p, is delayed in apc9Delta. Our findings suggest that Swm1p is required for full catalytic activity of the APC/C, whereas the requirement of Mnd2p for APC/C function appears to be negligible under standard laboratory conditions. Furthermore, the role of Apc9p in APC/C-dependent ubiquitination may be limited to the proteolysis of a select number of substrates.  相似文献   
166.
The ergosterol pathway in fungal pathogens is an attractive antimicrobial target because it is unique from the major sterol (cholesterol) producing pathway in humans. Lanosterol 14alpha-demethylase is the target for a major class of antifungals, the azoles. In this study we have isolated the gene for this enzyme from Cryptococcus neoformans. The gene, ERG11, was recovered using degenerate PCR with primers designed with a novel algorithm called CODEHOP. Sequence analysis of Erg11p identified a highly conserved region typical of the cytochrome P450 class of mono-oxygenases. The gene was present in single copy in the genome and mapped to one end of the largest chromosome. Comparison of the protein sequence to a number of major human fungal pathogen Erg11p homologs revealed that the C. neoformans protein was highly conserved, and most closely related to the Erg11p homologs from other basidiomycetes. Functional studies demonstrated that the gene could complement a Saccharomyces cerevisiae erg11 mutant, which confirmed the identity of the C. neoformans gene.  相似文献   
167.
In resting muscle, cytoplasmic Mg(2+) is a potent inhibitor of Ca(2+) release from the sarcoplasmic reticulum (SR). It is thought to inhibit calcium release channels (RyRs) by binding both to low affinity, low specificity sites (I-sites) and to high affinity Ca(2+) sites (A-sites) thus preventing Ca(2+) activation. We investigate the effects of luminal and cytoplasmic Ca(2+) on Mg(2+) inhibition at the A-sites of skeletal RyRs (RyR1) in lipid bilayers, in the presence of ATP or modified by ryanodine or DIDS. Mg(2+) inhibits RyRs at the A-site in the absence of Ca(2+), indicating that Mg(2+) is an antagonist and does not simply prevent Ca(2+) activation. Cytoplasmic Ca(2+) and Cs(+) decreased Mg(2+) affinity by a competitive mechanism. We describe a novel mechanism for luminal Ca(2+) regulation of Ca(2+) release whereby increasing luminal [Ca(2+)] decreases the A-site affinity for cytoplasmic Mg(2+) by a noncompetitive, allosteric mechanism that is independent of Ca(2+) flow. Ryanodine increases the Ca(2+) sensitivity of the A-sites by 10-fold, which is insufficient to explain the level of activation seen in ryanodine-modified RyRs at nM Ca(2+), indicating that ryanodine activates independently of Ca(2+). We describe a model for ion binding at the A-sites that predicts that modulation of Mg(2+) inhibition by luminal Ca(2+) is a significant regulator of Ca(2+) release from the SR. We detected coupled gating of RyRs due to luminal Ca(2+) permeating one channel and activating neighboring channels. This indicated that the RyRs existed in stable close-packed rafts within the bilayer. We found that luminal Ca(2+) and cytoplasmic Mg(2+) did not compete at the A-sites of single open RyRs but did compete during multiple channel openings in rafts. Also, luminal Ca(2+) was a stronger activator of multiple openings than single openings. Thus it appears that RyRs are effectively "immune" to Ca(2+) emanating from their own pore but sensitive to Ca(2+) from neighboring channels.  相似文献   
168.
Willingale R  Jones DJ  Lamb JH  Quinn P  Farmer PB  Ng LL 《Proteomics》2006,6(22):5903-5914
We have developed a technique for analysing blood plasma using MALDI-MS with subsequent data analysis to identify significant and specific differences between heart failure (HF) patients and healthy individuals. A training dataset comprising 100 HF patients and 100 healthy individuals was used to search for biomarkers (m/z range 1000-10,000). EWP cartridges when used in tandem with microcon centrifugal filters were found to give the best results. A data management chain including event binning, background subtraction and feature extraction was developed to reduce the data, and statistical analysis was used to map feature intensities on to a common scale. Various mathematical approaches including a simple cumulative score, support vector machines (SVM) and genetic algorithms (GAs) were then used to combine the results from individual features and provide a robust classification algorithm. The SVM gave the most promising results (accuracy 95%, receiver operating characteristic (ROC) score of 0.997 using 18 selected features). Finally, a test dataset comprising a further 32 HF patients and 20 controls was used to verify that the 18 putative biomarkers and classification algorithms gave reliable predictions (accuracy 88.5%, ROC score 0.998).  相似文献   
169.
µ-calpain and calpain-3 are Ca2+-dependent proteases found in skeletal muscle. Autolysis of calpains is observed using Western blot analysis as the cleaving of the full-length proteins to shorter products. Biochemical assays suggest that µ-calpain becomes proteolytically active in the presence of 2–200 µM Ca2+. Although calpain-3 is poorly understood, autolysis is thought to result in its activation, which is widely thought to occur at lower intracellular Ca2+ concentration levels ([Ca2+]i; 1 µM) than the levels at which µ-calpain activation occurs. We have demonstrated the Ca2+-dependent autolysis of the calpains in human muscle samples and rat extensor digitorum longus (EDL) muscles homogenized in solutions mimicking the intracellular environment at various [Ca2+] levels (0, 2.5, 10, and 25 µM). Autolysis of calpain-3 was found to occur across a [Ca2+] range similar to that for µ-calpain, and both calpains displayed a seemingly higher Ca2+ sensitivity in human than in rat muscle homogenates, with 15% autolysis observed after 1-min exposure to 2.5 µM Ca2+ in human muscle and almost none after 1- to 2-min exposure to the same [Ca2+]i level in rat muscle. During muscle activity, [Ca2+]i may transiently peak in the range found to autolyze µ-calpain and calpain-3, so we examined the effect of two types of exhaustive cycling exercise (30-s "all-out" cycling, n = 8; and 70% O2 peak until fatigue, n = 3) on the amount of autolyzed µ-calpain or calpain-3 in human muscle. No significant autolysis of µ-calpain or calpain-3 occurred as a result of the exercise. These findings have shown that the time- and concentration-dependent changes in [Ca2+]i that occurred during concentric exercise fall near but below the level necessary to cause autolysis of calpains in vivo. Ca2+-dependent proteases; proteolysis  相似文献   
170.
GRP78 is a major protein regulated by the mammalian endoplasmic reticulum stress response, and up-regulation has been shown to be important in protecting cells from challenge with cytotoxic agents. GRP78 has ATPase activity, acts as a chaperone, and interacts specifically with other proteins, such as caspases, as part of a mechanism regulating apoptosis. GRP78 is also reported to have a possible role as a Ca2+ storage protein. In order to understand the potential biological effects of Ca2+ and ATP/ADP binding on the biology of GRP78, we have determined its ligand binding properties. We show here for the first time that GRP78 can bind Ca2+, ATP, and ADP, each with a 1:1 stoichiometry, and that the binding of cation and nucleotide is cooperative. These observations do not support the hypothesis that GRP78 is a dynamic Ca2+ storage protein. Furthermore, we demonstrate that whereas Mg2+ enhances GRP78 binding to ADP and ATP to the same extent, Ca2+ shows a differential enhancement. In the presence of Ca2+, the KD for ATP is lowered approximately 11-fold, and the KD for ADP is lowered around 930-fold. The KD for Ca2+ is lowered approximately 40-fold in the presence of ATP and around 880-fold with ADP. These findings may explain the biological requirement for a nucleotide exchange factor to remove ADP from GRP78. Taken together, our data suggest that the Ca2+-binding property of GRP78 may be part of a signal transduction pathway that modulates complex interactions between GRP78, ATP/ADP, secretory proteins, and caspases, and this ultimately has important consequences for cell viability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号