首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2745篇
  免费   276篇
  国内免费   6篇
  3027篇
  2023年   21篇
  2022年   39篇
  2021年   63篇
  2020年   23篇
  2019年   36篇
  2018年   54篇
  2017年   40篇
  2016年   57篇
  2015年   122篇
  2014年   126篇
  2013年   176篇
  2012年   229篇
  2011年   215篇
  2010年   114篇
  2009年   99篇
  2008年   161篇
  2007年   145篇
  2006年   154篇
  2005年   106篇
  2004年   102篇
  2003年   87篇
  2002年   89篇
  2001年   87篇
  2000年   74篇
  1999年   57篇
  1998年   19篇
  1997年   22篇
  1996年   26篇
  1995年   29篇
  1994年   22篇
  1993年   11篇
  1992年   35篇
  1991年   18篇
  1990年   33篇
  1989年   35篇
  1988年   28篇
  1987年   19篇
  1986年   22篇
  1985年   29篇
  1984年   14篇
  1983年   17篇
  1982年   12篇
  1981年   10篇
  1980年   17篇
  1979年   24篇
  1977年   10篇
  1975年   14篇
  1973年   10篇
  1970年   10篇
  1969年   12篇
排序方式: 共有3027条查询结果,搜索用时 10 毫秒
941.
Plant metacaspases (MCPs) are conserved cysteine proteases that have been postulated as regulators of programmed cell death (PCD). Although MCPs have been proven to have PCD relevant functions in multiple species ranging from fungi to plants, how these proteases are modulated in vivo remains unclear. Aside from demonstrating that these proteases are distinct from metazoan caspases due to their different target site specificities, how these proteases are used to tightly regulate cell death progression is a key question that remains to be resolved. Some recent studies on the biochemical characteristics of type-II MCP activities in Arabidopsis may begin to shed additional light on this aspect. The in vitro catalytic activities of recombinant AtMC4, AtMC5 and AtMC8 are found to be Ca2+-dependent while recombinant AtMC9 is active under mildly acidic conditions and not dependent on stimulation by Ca2+. Alterations of cellular pH and Ca2+ concentration commonly occur during various stresses and may help to orchestrate differential activation of latent MCPs under these conditions. Recent peptide mapping for recombinant AtMC4 (also called Metacaspase-2d) followed by site-specific mutagenesis studies have revealed multiple potential self-cleavage sites with the identification of a conserved lysine residue (Lys-225) as the key position for enzyme function both in vitro and in vivo. The multiple self-cleavage sites in MCPs may also facilitate desensitization of these proteases and can provide a means for fine-tuning their proteolytic activities in order to achieve more sensitive control of downstream processes.  相似文献   
942.
Mass spectrometry-based proteomics is a maturing discipline of biologic research that is experiencing substantial growth. Instrumentation has steadily improved over time with the advent of faster and more sensitive instruments collecting ever larger data files. Consequently, the computational process of matching a peptide fragmentation pattern to its sequence, traditionally accomplished by sequence database searching and more recently also by spectral library searching, has become a bottleneck in many mass spectrometry experiments. In both of these methods, the main rate-limiting step is the comparison of an acquired spectrum with all potential matches from a spectral library or sequence database. This is a highly parallelizable process because the core computational element can be represented as a simple but arithmetically intense multiplication of two vectors. In this paper, we present a proof of concept project taking advantage of the massively parallel computing available on graphics processing units (GPUs) to distribute and accelerate the process of spectral assignment using spectral library searching. This program, which we have named FastPaSS (for Fast Parallelized Spectral Searching), is implemented in CUDA (Compute Unified Device Architecture) from NVIDIA, which allows direct access to the processors in an NVIDIA GPU. Our efforts demonstrate the feasibility of GPU computing for spectral assignment, through implementation of the validated spectral searching algorithm SpectraST in the CUDA environment.  相似文献   
943.
A combination of stable isotopes (15N) and molecular ecological approaches was used to investigate the vertical distribution and mechanisms of biological N2 production along a transect from the Omani coast to the central–northeastern (NE) Arabian Sea. The Arabian Sea harbors the thickest oxygen minimum zone (OMZ) in the world''s oceans, and is considered to be a major site of oceanic nitrogen (N) loss. Short (<48 h) anoxic incubations with 15N-labeled substrates and functional gene expression analyses showed that the anammox process was highly active, whereas denitrification was hardly detectable in the OMZ over the Omani shelf at least at the time of our sampling. Anammox was coupled with dissimilatory nitrite reduction to ammonium (DNRA), resulting in the production of double-15N-labeled N2 from 15NO2, a signal often taken as the lone evidence for denitrification in the past. Although the central–NE Arabian Sea has conventionally been regarded as the primary N-loss region, low potential N-loss rates at sporadic depths were detected at best. N-loss activities in this region likely experience high spatiotemporal variabilities as linked to the availability of organic matter. Our finding of greater N-loss associated with the more productive Omani upwelling region is consistent with results from other major OMZs. The close reliance of anammox on DNRA also highlights the need to take into account the effects of coupling N-transformations on oceanic N-loss and subsequent N-balance estimates.  相似文献   
944.
945.
Lam SM  Tong L  Yong SS  Li B  Chaurasia SS  Shui G  Wenk MR 《PloS one》2011,6(10):e24339

Background

Previous lipidomic analyses of the human meibum had largely focused on individuals from non-Asian populations, despite the higher prevalence of dysfunctional tear syndrome (DTS) observed across Asia. Information pertaining to the alterations in lipid profiles in relation to DTS onset and progression is also lacking and warrants comprehensive experimental analysis.

Methodologies/Principal Findings

We examined the meibum lipidome of 27 DTS patients and 10 control subjects for a total of 256 lipid species from 12 major lipid classes, including cholesteryl ester (CE), wax ester (WE), triacylglyceride (TAG), (O-acyl)-ω-hydroxy fatty acid (OAHFA), glycerophospholipids (phosphatidylcholine, PC; phosphatidylethanolamine, PE; phosphatidylinositol, PI; phosphatidylglycerol, PG) and sphingolipids (sphingomyelin, SM; ceramide, Cer; glucosylceramide, GluCer; dihexosylceramide, DihexCer). Neutral lipids were analysed using high-performance liquid-chromatography coupled with mass spectrometry (HPLC/MS) and tandem mass spectrometry (MS/MS) was used for the qualitative and quantitative analysis of polar lipid species. DTS patients were classified into three severity groups (i.e. mild, moderate and severe) based on the ocular surface disease index (OSDI). A significantly lower level of TAG (p<0.05) was observed in patients under the moderate category compared to the mild category. Notably, a number of OAHFA species displayed consistently decreasing levels that correlate with increasing disease severity. An attempt was also made to investigate the changes in meibum lipid profiles of DTS patients compared to normal individuals classified based on OSDI score. Several unsaturated TAG and PC species were found at significantly higher levels (p<0.05) in patients than controls.

Conclusion

The current study presents, for the first time, a comprehensive lipidome of meibum from individuals of an Asian ethnicity, which can potentially offer new insights into the higher prevalence of DTS observed amongst Asian populations. This study also represents an attempt towards identification of lipid species in meibum which could serve as marker for DTS.  相似文献   
946.
947.
948.
Syed K  Porollo A  Lam YW  Yadav JS 《PloS one》2011,6(12):e28286
The model white rot fungus Phanerochaete chrysosporium, which is known for its versatile pollutant-biodegradation ability, possesses an extraordinarily large repertoire of P450 monooxygenases in its genome. However, the majority of these P450s have hitherto unknown function. Our initial studies using a genome-wide gene induction strategy revealed multiple P450s responsive to individual classes of xenobiotics. Here we report functional characterization of a cytochrome P450 monooxygenase, CYP5136A3 that showed common responsiveness and catalytic versatility towards endocrine-disrupting alkylphenols (APs) and mutagenic/carcinogenic polycyclic aromatic hydrocarbons (PAHs). Using recombinant CYP5136A3, we demonstrated its oxidation activity towards APs with varying alkyl side-chain length (C3-C9), in addition to PAHs (3-4 ring size). AP oxidation involves hydroxylation at the terminal carbon of the alkyl side-chain (ω-oxidation). Structure-activity analysis based on a 3D model indicated a potential role of Trp(129) and Leu(324) in the oxidation mechanism of CYP5136A3. Replacing Trp(129) with Leu (W129L) and Phe (W129F) significantly diminished oxidation of both PAHs and APs. The W129L mutation caused greater reduction in phenanthrene oxidation (80%) as compared to W129F which caused greater reduction in pyrene oxidation (88%). Almost complete loss of oxidation of C3-C8 APs (83-90%) was observed for the W129L mutation as compared to W129F (28-41%). However, the two mutations showed a comparable loss (60-67%) in C9-AP oxidation. Replacement of Leu(324) with Gly (L324G) caused 42% and 54% decrease in oxidation activity towards phenanthrene and pyrene, respectively. This mutation also caused loss of activity towards C3-C8 APs (20-58%), and complete loss of activity toward nonylphenol (C9-AP). Collectively, the results suggest that Trp(129) and Leu(324) are critical in substrate recognition and/or regio-selective oxidation of PAHs and APs. To our knowledge, this is the first report on an AP-oxidizing P450 from fungi and on structure-activity relationship of a eukaryotic P450 for fused-ring PAHs (phenanthrene and pyrene) and AP substrates.  相似文献   
949.
Prognostic markers for glioblastoma multiforme (GBM) are important for patient management. Recent advances have identified prognostic markers for GBMs that use telomerase or the alternative lengthening of telomeres (ALT) mechanism for telomere maintenance. Approximately 40% of GBMs have no defined telomere maintenance mechanism (NDTMM), with a mixed survival for affected individuals. This study examined genetic variants in the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene that encodes the p16(INK4a) and p14(ARF) tumor suppressors, and the isocitrate dehydrogenase 1 (IDH1) gene as potential markers of survival for 40 individuals with NDTMM GBMs (telomerase negative and ALT negative by standard assays), 50 individuals with telomerase, and 17 individuals with ALT positive tumors. The analysis of CDKN2A showed NDTMM GBMs had an increased minor allele frequency for the C500G (rs11515) polymorphism compared to those with telomerase and ALT positive GBMs (p = 0.002). Patients with the G500 allele had reduced survival that was independent of age, extent of surgery, and treatment. In the NDTMM group G500 allele carriers had increased loss of CDKN2A gene dosage compared to C500 homozygotes. An analysis of IDH1 mutations showed the R132H mutation was associated with ALT positive tumors, and was largely absent in NDTMM and telomerase positive tumors. In the ALT positive tumors cohort, IDH1 mutations were associated with a younger age for the affected individual. In conclusion, the G500 CDKN2A allele was associated with NDTMM GBMs from older individuals with poorer survival. Mutations in IDH1 were not associated with NDTMM GBMs, and instead were a marker for ALT positive tumors in younger individuals.  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号