首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2764篇
  免费   278篇
  国内免费   6篇
  3048篇
  2023年   21篇
  2022年   39篇
  2021年   63篇
  2020年   23篇
  2019年   36篇
  2018年   56篇
  2017年   40篇
  2016年   57篇
  2015年   124篇
  2014年   128篇
  2013年   177篇
  2012年   231篇
  2011年   217篇
  2010年   118篇
  2009年   99篇
  2008年   161篇
  2007年   145篇
  2006年   154篇
  2005年   108篇
  2004年   102篇
  2003年   87篇
  2002年   89篇
  2001年   87篇
  2000年   74篇
  1999年   57篇
  1998年   19篇
  1997年   22篇
  1996年   28篇
  1995年   29篇
  1994年   22篇
  1993年   11篇
  1992年   35篇
  1991年   18篇
  1990年   33篇
  1989年   35篇
  1988年   28篇
  1987年   19篇
  1986年   22篇
  1985年   29篇
  1984年   15篇
  1983年   17篇
  1982年   12篇
  1981年   10篇
  1980年   17篇
  1979年   24篇
  1977年   10篇
  1975年   14篇
  1973年   10篇
  1970年   10篇
  1969年   12篇
排序方式: 共有3048条查询结果,搜索用时 15 毫秒
41.
42.
Culturing of microalgae as an alternative feedstock for biofuel production has received a lot of attention in recent years due to their fast growth rate and ability to accumulate high quantity of lipid and carbohydrate inside their cells for biodiesel and bioethanol production, respectively. In addition, this superior feedstock offers several environmental benefits, such as effective land utilization, CO(2) sequestration, self-purification if coupled with wastewater treatment and does not trigger food versus fuel feud. Despite having all these 'theoretical' advantages, review on problems and issues related to energy balance in microalgae biofuel are not clearly addressed until now. Base on the maturity of current technology, the true potential of microalgae biofuel towards energy security and its feasibility for commercialization are still questionable. Thus, this review is aimed to depict the practical problems that are facing the microalgae biofuel industry, covering upstream to downstream activities by accessing the latest research reports and critical data analysis. Apart from that, several interlink solutions to the problems will be suggested with the purpose to bring current microalgae biofuel research into a new dimension and consequently, to revolutionize the entire microalgae biofuel industry towards long-term sustainability.  相似文献   
43.
The enhanced electricity generation in a biocathode bio-electrochemical system (BES) with Microcystis aeruginosa IPP as the cathodic microorganism under illumination is investigated. The results show that this cyanobacterium is able to act as a potential cathodic microorganism under illumination. In addition, M. aeruginosa IPP is found to produce reactive oxygen species (ROS) in its growth in the BES. ROS, as more competitive electron acceptors than oxygen, are utilized prior to oxygen. The BES current is substantially reduced when the ROS production is inhibited by mannitol, indicating that the ROS secreted by the cyanobacterium play an important role in the electricity generation of such a biocathode BES. This work demonstrates that the ROS released by cyanobacteria benefit for an enhanced electricity generation of BES.  相似文献   
44.
Specific cellular stresses, including hyperosmotic stress, caused a dramatic but reversible cytoplasmic accumulation of the otherwise nuclear 45-kDa variant of the protein-tyrosine phosphatase TCPTP (TC45). In the cytoplasm, TC45 dephosphorylated the epidermal growth factor receptor and down-regulated the hyperosmotic stress-induced activation of the c-Jun N-terminal kinase. The hyperosmotic stress-induced nuclear exit of TC45 was not inhibited by leptomycin B, indicating that TC45 nuclear exit was independent of the exportin CRM-1. Moreover, hyperosmotic stress did not induce the cytoplasmic accumulation of a green fluorescent protein-TC45 fusion protein that was too large to diffuse across the nuclear pore. Our results indicate that TC45 nuclear exit may occur by passive diffusion and that cellular stress may induce the cytoplasmic accumulation of TC45 by inhibiting nuclear import. Neither p42(Erk2) nor the stress-activated c-Jun N-terminal kinase or p38 mediated the stress-induced redistribution of TC45. We found that only those stresses that stimulated the metabolic stress-sensing enzyme AMP-activated protein kinase (AMPK) induced the redistribution of TC45. In addition, specific pharmacological activation of the AMPK was sufficient to cause the accumulation of TC45 in the cytoplasm. Our studies indicate that specific stress-activated signaling pathways that involve the AMPK can alter the nucleocytoplasmic distribution of TC45 and thus regulate TC45 function in vivo.  相似文献   
45.
Glucose-galactose malabsorption (GGM) is an autosomal recessive disorder caused by defects in the Na+/glucose cotransporter (SGLT1). Neonates present with severe diarrhea while on any diet containing glucose and/or galactose [1]. This study focuses on a patient of Swiss and Dominican descent. All 15 exons of SGLT1 were screened using single stranded conformational polymorphism analyses, and aberrant PCR products were sequenced. Two missense mutations, Gly318Arg and Ala468Val, were identified. SGLT1 mutants were expressed in Xenopus laevis oocytes for radiotracer uptake, electrophysiological experiments, and Western blotting. Uptakes of [14C]alpha-methyl-d-glucoside by the mutants were 5% or less than that of wild-type. Two-electrode voltage-clamp experiments confirmed the transport defects, as no noticeable sugar-induced current could be elicited from either mutant [2]. Western blots of cell protein showed levels of each SGLT1 mutant protein comparable to that of wild-type, and that both were core-glycosylated. Presteady-state current measurements indicated an absence of SGLT1 in the plasma membrane. We suggest that the compound heterozygote missense mutations G318R and A468V lead to GGM in this patient by defective trafficking of mutant proteins from the endoplasmic reticulum to the plasma membrane.  相似文献   
46.
The CCN family of angiogenic regulators: the integrin connection   总被引:42,自引:0,他引:42  
  相似文献   
47.
Activation of blood platelets by physiological stimuli (e.g. thrombin, ADP) at sites of vascular injury induces inside-out signaling, resulting in a conformational change of the prototype integrin alphaIIbbeta3 from an inactive to an active state competent to bind soluble fibrinogen. Furthermore, ligand occupancy of alphaIIbbeta3 initiates outside-in signaling and additional conformational changes of the receptor, leading to the exposure of extracellular neoepitopes termed ligand-induced binding sites (LIBS), which are recognized by anti-LIBS monoclonal antibodies. To date, the mechanism of bidirectional transmembrane signaling of alphaIIbbeta3 has not been established. In this study, using our newly developed anti-LIBScyt1 monoclonal antibody, we showed that extracellular ligand binding to alphaIIbbeta3 on blood platelets induces a transmembrane conformational change in alphaIIbbeta3, thereby exposing the LIBScyt1 epitope in the alphaIIb cytoplasmic sequence between Lys994 and Asp1003. In addition, a point mutation at this site (P998A/P999A) renders alphaIIbbeta3 constitutively active to bind extracellular ligands, resulting in fibrinogen-dependent cell-cell aggregation. Taken collectively, these results demonstrated that the extracellular ligand-binding site and a cytoplasmic LIBS epitope in integrin alphaIIbbeta3 are conformationally and functionally coupled. Such bidirectional modulation of alphaIIbbeta3 conformation across the cell membrane may play a key role in inside-out and outside-in signaling via this integrin.  相似文献   
48.
A delicate balance between synthesis and degradation of extracellular matrix (ECM) by matrix metalloproteinases (MMPs) is an essential feature of tissue remodeling. We have recently demonstrated that keratinocyte releasable stratifin, also known as 14-3-3 sigma protein, plays a critical role in modulating collagenase (MMP-1) mRNA expression in human dermal fibroblasts. In this study, we further characterized the collagenase stimulatory effect of stratifin in dermal fibroblasts and evaluated its effect in the presence and absence of insulin. Our data indicate that stratifin increases the expression of collagenase mRNA more than 20-fold in dermal fibroblasts, grown in either Dulbecco's modified Eagle's medium (DMEM) plus 2% or 10% fetal bovine serum (FBS). Collagenase stimulatory effect of stratifin was completely blocked, when fibroblasts were cultured in test medium consisting of 50% keratinocyte serum-free medium (KSFM) and 50% DMEM. The collagenase suppressive effect of test medium was directly proportional to the volume of KSFM used. As this medium contained insulin, we then evaluated the collagenase stimulatory effect of stratifin in dermal fibroblasts in the presence and absence of insulin. The results revealed that stratifin significantly increased the expression of collagenase mRNA/18S (*p < 0.05, n = 3) ratio, while insulin significantly decreased the expression of collagenase mRNA/18S (*p < 0.05, n = 3) ratio. The insulin inhibitory effect on collagenase mRNA expression was time and dose dependent. The maximal inhibitory effect of insulin was seen at 36 h post treatment. In conclusion, stratifin stimulates the expression of collagenase mRNA expression in dermal fibroblasts and this effect is suppressed by insulin treatment.  相似文献   
49.

Background  

Array comparative genomic hybridization (CGH) is a technique which detects copy number differences in DNA segments. Complete sequencing of the human genome and the development of an array representing a tiling set of tens of thousands of DNA segments spanning the entire human genome has made high resolution copy number analysis throughout the genome possible. Since array CGH provides signal ratio for each DNA segment, visualization would require the reassembly of individual data points into chromosome profiles.  相似文献   
50.
Green tea has been shown to have many biological effects, including effects on metabolism, angiogenesis, oxidation, and cell proliferation. Unfortunately, the most abundant green tea polyphenol (-)-epigallocatechin gallate or (-)-EGCG is very unstable in neutral or alkaline medium. This instability leads to a low bioavailability. In an attempt to enhance the stability of (-)-EGCG, we introduced peracetate protection groups on the reactive hydroxyls of (-)-EGCG (noted in text as 1). HPLC analysis shows that the protected (-)-EGCG analog is six times more stable than natural (-)-EGCG under slightly alkaline conditions. A series of bioassays show that 1 has no inhibitory activity against a purified 20S proteasome in vitro, but exhibits increased proteasome-inhibitory activity in intact leukemic cells over natural (-)-EGCG, indicating an intercellular conversion. Inhibition of cellular proteasome activity by 1 is associated with induction of cell death. Therefore, our results indicate that the protected analog 1 may function as a prodrug of the green tea polyphenol proteasome inhibitor (-)-EGCG.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号