首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2758篇
  免费   276篇
  国内免费   6篇
  3040篇
  2023年   21篇
  2022年   39篇
  2021年   63篇
  2020年   23篇
  2019年   36篇
  2018年   54篇
  2017年   40篇
  2016年   58篇
  2015年   122篇
  2014年   125篇
  2013年   174篇
  2012年   231篇
  2011年   215篇
  2010年   115篇
  2009年   100篇
  2008年   161篇
  2007年   145篇
  2006年   154篇
  2005年   106篇
  2004年   103篇
  2003年   87篇
  2002年   89篇
  2001年   87篇
  2000年   74篇
  1999年   58篇
  1998年   24篇
  1997年   22篇
  1996年   26篇
  1995年   29篇
  1994年   22篇
  1993年   12篇
  1992年   35篇
  1991年   18篇
  1990年   33篇
  1989年   35篇
  1988年   28篇
  1987年   19篇
  1986年   22篇
  1985年   29篇
  1984年   14篇
  1983年   18篇
  1982年   12篇
  1981年   10篇
  1980年   17篇
  1979年   24篇
  1977年   11篇
  1975年   14篇
  1973年   10篇
  1970年   10篇
  1969年   12篇
排序方式: 共有3040条查询结果,搜索用时 15 毫秒
11.
12.
High-resolution phosphorus-31 nuclear magnetic resonance (31P NMR) spectra of wild-type and mutant strains of Saccharomyces cerevisiae were observed at a frequency of 145.7 MHz. Levels of various phosphorus metabolites were investigated upon addition of glucose under both aerobic and anaerobic conditions. Three mutant strains were isolated and their biochemical defects characterized: pfk lacked phosphofructokinase activity; pgi lacked phosphoglucose isomerase activity; and cif had no glucose catabolite repression of the fructose bisphosphatase activity. Each mutant strain was found to accumulate characteristic sugar phosphates when glucose was added to the cell suspension. In the case of the phosphofructokinase deficient mutant, the appearance of a pentose shunt metabolite was observed. 31P NMR peak assignments were made by a pH titration of the acid extract of the cells. Separate signals for terminal, penultimate, and central phosphorus atoms in intracellular polyphosphates allowed the estimation of their average molecular weight. Signals for glycero(3)phosphochline, glycero(3)phosphoserine, and glycero(3) phosphoethanolamine as well as three types of nucleotide diphosphate sugars could be observed. The intracellular pH in resting and anaerobic cells was in the range 6.5--6.8 and the level of adenosine 5'-triphosphate (ATP) low. Upon introduction of oxygen, the ATP level increased considerably and the intracellular pH reached a value of pH 7.2--7.3, irrespective of the external medium pH, indicating active proton transport in these cells. A new peak representing the inorganic phosphate of one of the cellular organelles, whose pH differed from the cytoplasmic pH, could be detected under appropriate conditions.  相似文献   
13.
ObjectivesInduced pluripotent stem cells (iPSCs) generated by monolayer cultures is plagued by low efficiencies, high levels of manipulation and operator unpredictability. We have developed a platform, reprogramming, expansion, and differentiation on Microcarriers, to solve these challenges.Materials and MethodsFive sources of human somatic cells were reprogrammed, selected, expanded and differentiated in microcarriers suspension cultures.ResultsImprovement of transduction efficiencies up to 2 times was observed. Accelerated reprogramming in microcarrier cultures was 7 days faster than monolayer, providing between 30 and 50‐fold more clones to choose from fibroblasts, peripheral blood mononuclear cells, T cells and CD34+ stem cells. This was observed to be due to an earlier induction of genes (β‐catenin, E‐cadherin and EpCAM) on day 4 versus monolayer cultures which occurred on days 14 or later. Following that, faster induction and earlier stabilization of pluripotency genes occurred during the maturation phase of reprogramming. Integrated expansion without trypsinization and efficient differentiation, without embryoid bodies formation, to the three germ‐layers, cardiomyocytes and haematopoietic stem cells were further demonstrated.ConclusionsOur method can solve the inherent problems of conventional monolayer cultures. It is highly efficient, cell dissociation free, can be operated with lower labor, and allows testing of differentiation efficiency without trypsinization and generation of embryoid bodies. It is also amenable to automation for processing more samples in a small footprint, alleviating many challenges of manual monolayer selection.

We have developed an allied protocol for reprogramming, selecting, expanding and differentiating human pluripotent stem cells on Microcarriers (designated as RepMC). This method allows faster reprogramming, selecting 30‐50‐fold more candidates for characterization and also allows us to find high quality candidates that differentiate to cardiomyocytes and blood lineages. Mechanistically, this method appears to accelerate the induction, maturation and stabilization phases of reprogramming. Our findings help simplify the process of deriving and expanding iPSCs for therapeutic applications, offering a robust and scalable suspension platform for large‐scale generation of clinical grade iPSCs.  相似文献   
14.
Earlier investigations disclose that some plant ribosome-inactivating proteins (RIPs) adversely affect mouse embryonic development. In the present study, a mushroom RIP, namely lyophyllin from Lyophyllum shimeji, was isolated, partially sequenced, and its translation inhibitory activity determined. Its teratogenicity was studied by using a technique entailing microinjection and postimplantation whole-embryo culture. It was found that embryonic abnormalities during the period of organogenesis from E8.5 to E9.5 were induced by lyophyllin at a concentration as low as 50 μg/ml, and when the lyophyllin concentration was raised, the number of abnormal embryos increased, the final somite number decreased, and the abnormalities increased in severity. The affected embryonic structures included the cranial neural tube, forelimb buds, branchial arches, and body axis, while optic and otic placodes were more resistant. Lyophyllin at a concentration higher than 500 μg/ml also induced forebrain blisters within the cranial mesenchyme. When the abnormal embryos were examined histologically, an increase of cell death was found to be associated with abnormal structures, indicating that cell death may be one of the underlying causes of teratogenicity of the mushroom RIP. This constitutes the first report on the teratogenicity of a mushroom RIP.  相似文献   
15.
Changes in the popliteal lymph node (PLN) in mice evoked by a local graft-versus-host (GVH) reaction and by a single injection of various agents into the hind footpad were compared. The drug diphenylhydantoin induced similar weight changes in time as the GVH reaction. More vigorous and protracted reactions were induced by the drug nitrofurantoin and the contact sensitizer dinitrochlorobenzene, whereas the antigens lipopolysaccharide and sheep erythrocytes caused very moderate and short-lasting weight changes. Alterations of lymph node architecture upon injection of diphenylhydantoin resembled those observed during the GVH response. Some quantitative and qualitative differences were noted for nitrofurantoin, but clearly deviant morphological alterations were seen in response to lipopolysaccharide and sheep erythrocytes. The PLN reaction to dinitrochlorobenzene had features of both the GVH reaction and the antigen-induced responses. These findings support the concept that some drugs and chemicals may induce or exacerbate lymphoproliferative disorders by GVH-like mechanisms.  相似文献   
16.
Ionizing radiation is a special group of toxic agents whose general interaction can be calculated. This was demonstrated using a radiation interaction model previously published. In this paper, this model is refined and mathematically reformulated using a unified set of assumptions. It postulates the existence of a common intermediate lesion and the relative action of lesions before, at and after this common stage. General quantitative dose-effect relationships of mixed radiations can be derived from the dose-effect relationships of the components in the mixture.  相似文献   
17.
Recent progress indicates that there are multiple pathways of nucleocytoplasmic transport which involve specific targeting sequences, such as nuclear localization sequences (NLSs), and cytosolic receptor molecules of the importin/karyopherin superfamily which recognise and dock the NLS-containing proteins at the nuclear pore. This first step of nuclear import/export is of central importance, with the affinity of the importin-targeting sequence interaction a critical parameter in determining transport efficiency. Different importins possess distinct NLS-binding specificities, which allows the system to be modulated through differential expression of the importins themselves, as well as through competition between different importins for the same protein, and between different proteins for the same importin. The targeting sequence-importin interaction can also be influenced directly by phosphorylation increasing the affinity of the interaction with importins or by targeting sequence masking through phosphorylation or specific protein binding. Targeting sequence recognition thus appears to represent a key control point in the regulation of nuclear transport. BioEssays 22:532-544, 2000.  相似文献   
18.
BackgroundThe continued occurrence of more contagious Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants and waning immunity over time require ongoing reevaluation of the vaccine effectiveness (VE). This study aimed to estimate the effectiveness in 2 age groups (12 to 59 and 60 years or above) of 2 or 3 vaccine doses (BNT162b2 mRNA or mRNA-1273) by time since vaccination against SARS-CoV-2 infection and Coronavirus Disease 2019 (COVID-19) hospitalization in an Alpha-, Delta-, or Omicron-dominated period.Methods and findingsA Danish nationwide cohort study design was used to estimate VE against SARS-CoV-2 infection and COVID-19 hospitalization with the Alpha, Delta, or Omicron variant. Information was obtained from nationwide registries and linked using a unique personal identification number. The study included all previously uninfected residents in Denmark aged 12 years or above (18 years or above for the analysis of 3 doses) in the Alpha (February 20 to June 15, 2021), Delta (July 4 to November 20, 2021), and Omicron (December 21, 2021 to January 31, 2022) dominated periods. VE estimates including 95% confidence intervals (CIs) were calculated (1-hazard ratio∙100) using Cox proportional hazard regression models with underlying calendar time and adjustments for age, sex, comorbidity, and geographical region. Vaccination status was included as a time-varying exposure. In the oldest age group, VE against infection after 2 doses was 90.7% (95% CI: 88.2; 92.7) for the Alpha variant, 82.3% (95% CI: 75.5; 87.2) for the Delta variant, and 39.9% (95% CI: 26.3; 50.9) for the Omicron variant 14 to 30 days since vaccination. The VE waned over time and was 73.2% (Alpha, 95% CI: 57.1; 83.3), 50.0% (Delta, 95% CI: 46.7; 53.0), and 4.4% (Omicron, 95% CI: −0.1; 8.7) >120 days since vaccination. Higher estimates were observed after the third dose with VE estimates against infection of 86.1% (Delta, 95% CI: 83.3; 88.4) and 57.7% (Omicron, 95% CI: 55.9; 59.5) 14 to 30 days since vaccination. Among both age groups, VE against COVID-19 hospitalization 14 to 30 days since vaccination with 2 or 3 doses was 98.1% or above for the Alpha and Delta variants. Among both age groups, VE against COVID-19 hospitalization 14 to 30 days since vaccination with 2 or 3 doses was 95.5% or above for the Omicron variant. The main limitation of this study is the nonrandomized study design including potential differences between the unvaccinated (reference group) and vaccinated individuals.ConclusionsTwo vaccine doses provided high protection against SARS-CoV-2 infection and COVID-19 hospitalization with the Alpha and Delta variants with protection, notably against infection, waning over time. Two vaccine doses provided only limited and short-lived protection against SARS-CoV-2 infection with Omicron. However, the protection against COVID-19 hospitalization following Omicron SARS-CoV-2 infection was higher. The third vaccine dose substantially increased the level and duration of protection against infection with the Omicron variant and provided a high level of sustained protection against COVID-19 hospitalization among the +60-year-olds.

Mie Agermose Gram and colleagues estimate vaccine effectiveness against infection and COVID-19 hospitalization with the Alpha, Delta or Omicron variant in Denmark.  相似文献   
19.
Corneal abrasion not only damages the epithelium but also induces stromal keratocyte death at the site of injury. While a coordinated cascade of inflammatory cell recruitment facilitates epithelial restoration, it is unclear if this cascade is necessary for keratocyte recovery. Since platelet and neutrophil (PMN) recruitment after corneal abrasion is beneficial to epithelial wound healing, we wanted to determine if these cells play a role in regulating keratocyte repopulation after epithelial abrasion. A 2 mm diameter central epithelial region was removed from the corneas of C57BL/6 wildtype (WT), P-selectin deficient (P-sel-/-), and CD18 hypomorphic (CD18hypo) mice using the Algerbrush II. Corneas were studied at 6h intervals out to 48h post-injury to evaluate platelet and PMN cell numbers; additional corneas were studied at 1, 4, 14, and 28 days post injury to evaluate keratocyte numbers. In WT mice, epithelial abrasion induced a loss of anterior central keratocytes and keratocyte recovery was rapid and incomplete, reaching ~70% of uninjured baseline values by 4 days post-injury but no further improvement at 28 days post-injury. Consistent with a beneficial role for platelets and PMNs in wound healing, keratocyte recovery was significantly depressed at 4 days post-injury (~30% of uninjured baseline) in P-sel-/- mice, which are known to have impaired platelet and PMN recruitment after corneal abrasion. Passive transfer of platelets from WT, but not P-sel-/-, into P-sel-/- mice prior to injury restored anterior central keratocyte numbers at 4 days post-injury to P-sel-/- uninjured baseline levels. While PMN infiltration in injured CD18hypo mice was similar to injured WT mice, platelet recruitment was markedly decreased and anterior central keratocyte recovery was significantly reduced (~50% of baseline) at 4–28 days post-injury. Collectively, the data suggest platelets and platelet P-selectin are critical for efficient keratocyte recovery after corneal epithelial abrasion.  相似文献   
20.
Lam H  Schofield WB  Jacobs-Wagner C 《Cell》2006,124(5):1011-1023
Polarity is often an intrinsic property of the cell, yet little is known about its origin or its maintenance over generations. Here we identify a landmark protein, TipN, which acts as a spatial and temporal cue for setting up the correct polarity in the bacterium Caulobacter crescentus. TipN marks the new pole throughout most of the cell cycle, and its relocation to the nascent poles at the end of division provides a preexisting reference point for orienting the polarity axis in the progeny. Deletion of tipN causes pleiotropic polarity defects, including frequently reversed asymmetry in progeny size and mislocalization of proteins and organelles. Ectopic localization of TipN along the lateral side of the cell creates new axes of polarity leading to cell branching and formation of competent cell poles. Localization defects of the actin-like protein MreB in the DeltatipN mutant suggest that TipN is upstream of MreB in regulating cell polarity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号