首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7361篇
  免费   581篇
  国内免费   17篇
  7959篇
  2022年   62篇
  2021年   98篇
  2020年   58篇
  2019年   77篇
  2018年   81篇
  2017年   82篇
  2016年   200篇
  2015年   291篇
  2014年   327篇
  2013年   400篇
  2012年   472篇
  2011年   471篇
  2010年   320篇
  2009年   264篇
  2008年   397篇
  2007年   355篇
  2006年   365篇
  2005年   340篇
  2004年   301篇
  2003年   333篇
  2002年   304篇
  2001年   88篇
  2000年   68篇
  1999年   71篇
  1998年   67篇
  1997年   69篇
  1996年   46篇
  1995年   48篇
  1994年   62篇
  1993年   57篇
  1992年   76篇
  1991年   60篇
  1990年   54篇
  1989年   50篇
  1988年   48篇
  1987年   45篇
  1985年   42篇
  1984年   69篇
  1983年   48篇
  1982年   60篇
  1981年   67篇
  1980年   66篇
  1979年   44篇
  1978年   68篇
  1977年   54篇
  1976年   50篇
  1975年   42篇
  1974年   36篇
  1973年   50篇
  1972年   37篇
排序方式: 共有7959条查询结果,搜索用时 15 毫秒
991.
With a view to cloning the root-knot nematode resistance gene Mi in tomato by chromosome walking, we have developed a molecular probe for the tightly linked acid phosphatase-1 (Aps-1) locus. The acid phosphatase-1 allozyme (APS-11), encoded by the Aps-1 1 allele originating from Lycopersicon peruvianum, was purified to apparent homogeneity from tomato roots and suspension cells. Microsequencing of CNBr and tryptic peptides generated from APS-11 provided a partial amino acid sequence, which accounted for approximately 23% of the protein and revealed two stretches of homology with soybean proteins KSH3 and VSP27, comprising 22 matches within 26 amino acid residues. The partial amino acid sequence information enabled us to isolate a 2.4 kb genomic Aps-1 1 sequence by means of the polymerase chain reaction (PCR), primed by degenerate pools of oligodeoxyribonucleotides, synthesized on the basis of the amino acid sequences. Synthesis of the 2.4 kb PCR product was specific for genomic templates carrying the L. peruvianum Aps-1 1 allele. Crucial to the priming specificity and the synthesis of the 2.4 kb genomic sequence was the use of degenerate primer pools in which the number of different primer species was limited by incorporating deoxyinosine phosphate residues at three and four base ambiguities. In using cDNA as a template, a 490 bp sequence was obtained, indicating a high proportion of intron sequences in the 2.4 kb genomic Aps-1 1 sequence. The Aps-1 1 origin of the PCR product was confirmed by RFLP (restriction fragment length polymorphism) analysis, using both a chromosome 6 substitution line and a pair of nearly isogenic lines, differing for a small chromosomal region around the Aps-1/Mi loci.  相似文献   
992.
The use of the methylotrophic yeast Pichia pastoris (Komagataella phaffi) to produce heterologous proteins has been largely reported. However, investigations addressing the potential of this yeast to produce bulk chemicals are still scarce. In this study, we have studied the use of P. pastoris as a cell factory to produce the commodity chemical 3-hydroxypropionic acid (3-HP) from glycerol. 3-HP is a chemical platform which can be converted into acrylic acid and to other alternatives to petroleum-based products. To this end, the mcr gene from Chloroflexus aurantiacus was introduced into P. pastoris. This single modification allowed the production of 3-HP from glycerol through the malonyl-CoA pathway. Further enzyme and metabolic engineering modifications aimed at increasing cofactor and metabolic precursors availability allowed a 14-fold increase in the production of 3-HP compared to the initial strain. The best strain (PpHP6) was tested in a fed-batch culture, achieving a final concentration of 3-HP of 24.75 g l−1, a product yield of 0.13 g g−1 and a volumetric productivity of 0.54 g l−1 h−1, which, to our knowledge, is the highest volumetric productivity reported in yeast. These results benchmark P. pastoris as a promising platform to produce bulk chemicals for the revalorization of crude glycerol and, in particular, to produce 3-HP.  相似文献   
993.
Temperature has a fundamental impact on the metabolic rates of microorganisms and strongly influences microbial ecology and biogeochemical cycling in the environment. In this study, we examined the catabolic temperature response of natural communities of sulfate-reducing microorganisms (SRM) in polar, temperate and tropical marine sediments. In short-term sediment incubation experiments with 35S-sulfate, we demonstrated how the cardinal temperatures for sulfate reduction correlate with mean annual sediment temperatures, indicating specific thermal adaptations of the dominant SRM in each of the investigated ecosystems. The community structure of putative SRM in the sediments, as revealed by pyrosequencing of bacterial 16S rRNA gene amplicons and phylogenetic assignment to known SRM taxa, consistently correlated with in situ temperatures, but not with sediment organic carbon concentrations or C:N ratios of organic matter. Additionally, several species-level SRM phylotypes of the class Deltaproteobacteria tended to co-occur at sites with similar mean annual temperatures, regardless of geographic distance. The observed temperature adaptations of SRM imply that environmental temperature is a major controlling variable for physiological selection and ecological and evolutionary differentiation of microbial communities.  相似文献   
994.
Besides the well‐understood DNA damage response via establishment of G2 checkpoint arrest, novel studies focus on the recovery from arrest by checkpoint override to monitor cell cycle re‐entry. The aim of this study was to investigate the role of Chk1 in the recovery from G2 checkpoint arrest in HCT116 (human colorectal cancer) wt, p53–/– and p21–/– cell lines following H2O2 treatment. Firstly, DNA damage caused G2 checkpoint activation via Chk1. Secondly, overriding G2 checkpoint led to (i) mitotic slippage, cell cycle re‐entry in G1 and subsequent G1 arrest associated with senescence or (ii) premature mitotic entry in the absence of p53/p21WAF1 causing mitotic catastrophe. We revealed subtle differences in the initial Chk1‐involved G2 arrest with respect to p53/p21WAF1: absence of either protein led to late G2 arrest instead of the classic G2 arrest during checkpoint initiation, and this impacted the release back into the cell cycle. Thus, G2 arrest correlated with downstream senescence, but late G2 arrest led to mitotic catastrophe, although both cell cycle re‐entries were linked to upstream Chk1 signalling. Chk1 knockdown deciphered that Chk1 defines long‐term DNA damage responses causing cell cycle re‐entry. We propose that recovery from oxidative DNA damage‐induced G2 arrest requires Chk1. It works as cutting edge and navigates cells to senescence or mitotic catastrophe. The decision, however, seems to depend on p53/p21WAF1. The general relevance of Chk1 as an important determinant of recovery from G2 checkpoint arrest was verified in HT29 colorectal cancer cells.  相似文献   
995.
996.
Abstract

A comparative study using immobilised DNA and PNA oligomers demonstrates the suitability of PNA molecules as sequence specific capture probes in the detection of single point mutations in a DNA analyte and in the analysis of complex analyte mixtures.  相似文献   
997.
998.
Mitochondria are increasingly recognized as cellular hubs to orchestrate signaling pathways that regulate metabolism, redox homeostasis, and cell fate decisions. Recent research revealed a role of mitochondria also in innate immune signaling; however, the mechanisms of how mitochondria affect signal transduction are poorly understood. Here, we show that the NF‐κB pathway activated by TNF employs mitochondria as a platform for signal amplification and shuttling of activated NF‐κB to the nucleus. TNF treatment induces the recruitment of HOIP, the catalytic component of the linear ubiquitin chain assembly complex (LUBAC), and its substrate NEMO to the outer mitochondrial membrane, where M1‐ and K63‐linked ubiquitin chains are generated. NF‐κB is locally activated and transported to the nucleus by mitochondria, leading to an increase in mitochondria‐nucleus contact sites in a HOIP‐dependent manner. Notably, TNF‐induced stabilization of the mitochondrial kinase PINK1 furthermore contributes to signal amplification by antagonizing the M1‐ubiquitin‐specific deubiquitinase OTULIN. Overall, our study reveals a role for mitochondria in amplifying TNF‐mediated NF‐κB activation, both serving as a signaling platform, as well as a transport mode for activated NF‐κB to the nuclear.  相似文献   
999.
1000.
We have investigated the DNA polymorphism for the DQA1 promoter region (QAP) and HLA-class II DRB1, DQA1, and DQB1 genes in 178 central European patients with Systemic lupus erythematosus (SLE) using polymerase chain reaction and Dig-ddUTP labeled oligonucleotides. Increased frequencies of DRB1*02 and *03 are confirmed by DNA typing. In addition, the frequencies of DQA1*0501, *0102 and DQB1*0201, *0602 alleles are increased in the patients as compared to controls. The strongest association to SLE is found with DRB1*03 and DQB1*0201 alleles (p<10–7, p corr. <10–5 and p<10–6, p corr. <10–4, respectively). By investigating the DQA1 promoter region in the SLE patients we have detected nine different QAP variants. Increased frequencies of QAP1.2 and QAP4.1 are observed in patients as compared to controls (p <0.05, p corr. = n. s.). Analysis of linkage disquilibria demonstrates a very strong association between QAP variants and DQA1, DRB1 alleles. Certain QAP variants are completely associated with DQA1 and DRB1 alleles, whereas others can combine with different DQA1 and DRB1 alleles. All DRB1*02-positive patients and controls carry QAP1.2, and all DRB1*03-positive patients and controls carry QAP4.1. Conversely, the QAP1.2 variant appears only in DRB1*02 haplotypes, while the QAP4.1 variant can be observed in DRB1*03, *11, and *1303 haplotypes. Based on the strong linkage disequilibria between DRB1-DQA1-DQB1 genes and between DRB1-QAP-DQA1, we have deduced the four-point haplotypes for DRB1-QAP-DQA1-DQB1 in patients and controls. Two haplotypes DRB1*02-QAP1.2-DQA1*0102-DQB1*0602-and DRB1*03-QAP4.1-DQA1*0501-DQB1*0201 are significantly increased in patient as compared to controls (p<0.01, p corr. = n.s., RR = 1.8 and p <10–7, p corr. <10–5, RR = 3.1, respectively). The analysis of relative risks attributed to the various alleles of QAP, DQA1, and DQB1 as well as the investigation of the deduced DRB1-QAP-DQA1-DQB1 haplotypes leads to the conclusion that QAP4.1 and DQA1*0501 on the DR3 haplotypes are probably not involved in SLE susceptibility. There is no evidence for the involvement of DQ2 / dimers coded in transposition. Thus, susceptibility to SLE is on the DR3 haplotype most probably localized at DRB1 or telomeric of DRB1, while for the DR2 haplotype such orientation cannot be given. SLE study group members: M. Baur, A. Corvetta, H. Ehrfeld, J. Frey, J. R. Kalden, F. Krapf, B. Lang, G. G. Lange, K. Pirner, C. Rittner, E. Röther, P. Schneider, H. P. Seelig, S. Seuchter, W. Stangel, C. Specker, P. Späth, H. Deicher. Correspondence to: Z. Yao.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号