排序方式: 共有123条查询结果,搜索用时 10 毫秒
41.
Acetylcholinesterase (AChE) is one of the fastest enzymes known, even though the active site is buried inside the protein at the end of a 20-A deep narrow gorge. Among the great variety of crystal structures of this enzyme, both in the absence and presence of various ligands and proteins, the structure of a complex of AChE with the pseudo-irreversible inhibitor Mf268 is of particular interest, as it assists in the proposal of a back door for product clearance from the active site. Binding of Mf268 to AChE results in the carbamoylation of Ser200 and liberation of an eseroline-fragment as the leaving group. The crystal structure of the AChE-Mf268 complex, however, proves that eseroline has escaped from the enzyme, despite the fact that the Ser-bound inhibitor fragment blocks the gorge entrance. The existence of alternative routes other than through the gorge for product clearance has been postulated but is still controversially discussed in the literature, as an experimental proof for such a back door is still missing. We have used Monte Carlo-based molecular docking methods in order to examine possible alternative pathways that could allow eseroline to be released from the protein after being cleaved from the substrate by Ser200. Based on our results, a short channel at the bottom of the gorge seems to be the most probable back-door site, which begins at amino acid Trp84 and ends at the enzyme surface in a cavity close to amino acid Glu445. [Figure: see text]. 相似文献
42.
Yaser Khajebishak Laleh Payahoo Mohammadreza Alivand Beitollah Alipour 《Journal of cellular physiology》2019,234(3):2112-2120
Diabetes is one of the most prevalent diseases in the worldwide. Type 2 diabetes mellitus (T2DM), the most common form of the disease, has become a serious threat to public health and is a growing burden on global economies. Due to the unexpected adverse effects of antidiabetic medicines, the use of nutraceuticals as a complementary therapy has drawn extensive attention by investigators. In this issue, a novel nutraceutical, Punicic acid (PA)—the main ingredient of pomegranate seed oil (PSO) that has potential therapeutic effects in T2DM—has been investigated. PA is a peroxisome proliferator-activated receptor gamma agonist, and unlike synthetic ligands, such as thiazolidinediones, it has no side effects. PA exerts antidiabetic effects via various mechanisms, such as reducing inflammatory cytokines, modulating glucose homeostasis, and antioxidant properties. In this review, we discussed the potential therapeutic effects of PSO and PA and represented the related mechanisms involved in the management of T2DM. 相似文献
43.
Inducing indel mutation in the SOX6 gene by zinc finger nuclease for gamma reactivation: An approach towards gene therapy of beta thalassemia 下载免费PDF全文
44.
Narmin Ghaffari Laleh Chiara Maria Lavinia Loeffler Julia Grajek Kateina Stakov Alexander T. Pearson Hannah Sophie Muti Christian Trautwein Heiko Enderling Jan Poleszczuk Jakob Nikolas Kather 《PLoS computational biology》2022,18(2)
Classical mathematical models of tumor growth have shaped our understanding of cancer and have broad practical implications for treatment scheduling and dosage. However, even the simplest textbook models have been barely validated in real world-data of human patients. In this study, we fitted a range of differential equation models to tumor volume measurements of patients undergoing chemotherapy or cancer immunotherapy for solid tumors. We used a large dataset of 1472 patients with three or more measurements per target lesion, of which 652 patients had six or more data points. We show that the early treatment response shows only moderate correlation with the final treatment response, demonstrating the need for nuanced models. We then perform a head-to-head comparison of six classical models which are widely used in the field: the Exponential, Logistic, Classic Bertalanffy, General Bertalanffy, Classic Gompertz and General Gompertz model. Several models provide a good fit to tumor volume measurements, with the Gompertz model providing the best balance between goodness of fit and number of parameters. Similarly, when fitting to early treatment data, the general Bertalanffy and Gompertz models yield the lowest mean absolute error to forecasted data, indicating that these models could potentially be effective at predicting treatment outcome. In summary, we provide a quantitative benchmark for classical textbook models and state-of-the art models of human tumor growth. We publicly release an anonymized version of our original data, providing the first benchmark set of human tumor growth data for evaluation of mathematical models. 相似文献
45.
Pym AS Brodin P Majlessi L Brosch R Demangel C Williams A Griffiths KE Marchal G Leclerc C Cole ST 《Nature medicine》2003,9(5):533-539
The live tuberculosis vaccines Mycobacterium bovis BCG (bacille Calmette-Guérin) and Mycobacterium microti both lack the potent, secreted T-cell antigens ESAT-6 (6-kDa early secretory antigenic target) and CFP-10 (10-kDa culture filtrate protein). This is a result of independent deletions in the region of deletion-1 (RD1) locus, which is intact in virulent members of the Mycobacterium tuberculosis complex. To increase their immunogenicity and protective capacity, we complemented both vaccines with different constructs containing the esxA and esxB genes, which encode ESAT-6 and CFP-10 respectively, as well as a variable number of flanking genes. Only reintroduction of the complete locus, comprising at least 11 genes, led to full secretion of the antigens and resulted in specific ESAT-6-dependent immune responses; this suggests that the flanking genes encode a secretory apparatus. Mice and guinea pigs vaccinated with the recombinant strain BCG::RD1-2F9 were better protected against challenge with M. tuberculosis, showing less severe pathology and reduced dissemination of the pathogen, as compared with control animals immunized with BCG alone. 相似文献
46.
Divya Pathania Mario Sechi Michele Palomba Vanna Sanna Francesco Berrettini Angela Sias Laleh Taheri Nouri Neamati 《Biochimica et Biophysica Acta (BBA)/General Subjects》2014
Background
Altered cellular bioenergetics and oxidative stress are emerging hallmarks of most cancers including pancreatic cancer. Elevated levels of intrinsic reactive oxygen species (ROS) in tumors make them more susceptible to exogenously induced oxidative stress. Excessive oxidative insults overwhelm their adaptive antioxidant capacity and trigger ROS-mediated cell death. Recently, we have discovered a novel class of quinazolinediones that exert their cytotoxic effects by modulating ROS-mediated signaling.Methods
Cytotoxic potential was determined by colorimetric and colony formation assays. An XF24 Extracellular Flux Analyzer, and colorimetric and fluorescent techniques were used to assess the bioenergetics and oxidative stress effects, respectively. Mechanism was determined by Western blots.Results
Compound 3a (6-[(2-acetylphenyl)amino]quinazoline-5,8-dione) was identified through a medium throughput screen of ~ 1000 highly diverse in-house compounds and chemotherapeutic agents for their ability to alter cellular bioenergetics. Further structural optimizations led to the discovery of a more potent analog, 3b (6-[(3-acetylphenyl)amino]quinazoline-5,8-dione) that displayed anti-proliferative activities in low micromolar range in both drug-sensitive and drug-resistant cancer cells. Treatment with 3b causes Akt activation resulting in increased cellular oxygen consumption and oxidative stress in pancreatic cancer cells. Moreover, oxidative stress induced by 3b promoted activation of stress kinases (p38/JNK) resulting in cancer cell death. Treatment with antioxidants was able to reduce cell death confirming ROS-mediated cytotoxicity.Conclusion
In conclusion, our novel quinazolinediones are promising lead compounds that selectively induce ROS-mediated cell death in cancer cells and warrant further preclinical studies.General significance
Since 3b (6-[(3-acetylphenyl)amino]quinazoline-5,8-dione) exerts Akt-dependent ROS-mediated cell death, it might provide potential therapeutic options for chemoresistant and Akt-overexpressing cancers. 相似文献47.
Adriano Taddeo Laleh Khodadadi Caroline Voigt Imtiaz M Mumtaz Qingyu Cheng Katrin Moser Tobias Alexander Rudolf A Manz Andreas Radbruch Falk Hiepe Bimba F Hoyer 《Arthritis research & therapy》2015,17(1)
IntroductionAutoantibodies contribute significantly to the pathogenesis of systemic lupus erythematosus (SLE). Unfortunately, the long-lived plasma cells (LLPCs) secreting such autoantibodies are refractory to conventional immunosuppressive treatments. Although generated long before the disease becomes clinically apparent, it remains rather unclear whether LLPC generation continues in the established disease. Here, we analyzed the generation of LLPCs, including autoreactive LLPCs, in SLE-prone New Zealand Black/New Zealand White F1 (NZB/W F1) mice over their lifetime, and their regeneration after depletion.MethodsBromodeoxyuridine pulse-chase experiments in mice of different ages were performed in order to analyze the generation of LLPCs during the development of SLE. LLPCs were enumerated by flow cytometry and autoreactive anti-double-stranded DNA (anti-dsDNA) plasma cells by enzyme-linked immunospot (ELISPOT). For analyzing the regeneration of LLPCs after depletion, mice were treated with bortezomib alone or in combination with cyclophosphamide and plasma cells were enumerated 12 hours, 3, 7, 11 and 15 days after the end of the bortezomib cycle.ResultsAutoreactive LLPCs are established in the spleen and bone marrow of SLE-prone mice very early in ontogeny, before week 4 and before the onset of symptoms. The generation of LLPCs then continues throughout life. LLPC counts in the spleen plateau by week 10, but continue to increase in the bone marrow and inflamed kidney. When LLPCs are depleted by the proteasome inhibitor bortezomib, their numbers regenerate within two weeks. Persistent depletion of LLPCs was achieved only by combining a cycle of bortezomib with maintenance therapy, for example cyclophosphamide, depleting the precursors of LLPCs or preventing their differentiation into LLPCs.ConclusionsIn SLE-prone NZB/W F1 mice, autoreactive LLPCs are generated throughout life. Their sustained therapeutic elimination requires both the depletion of LLPCs and the inhibition of their regeneration. 相似文献
48.
Abbas Karimi Zahra Madjd Laleh Habibi Seyed Mohammad Akrami 《Biological trace element research》2014,160(1):143-151
The long interspersed elements-1 (LINE1 or L1 retrotransposon) constitute 17 % of the human genome and retain mobility properties within the genome. At present, 80–100 human L1 elements are thought to be active in the genome. The mobilization of these active elements may be influenced upon exposure to the heavy metals. In the present study, we evaluated the association of aluminum, lead, and copper exposure with L1 retrotransposition in human hepatocellular carcinoma (HepG2) cell line. An in vitro retrotransposition assay using an enhanced green fluorescent protein (EGFP)-tagged L1RP cassette was established to track EGFP shining as the mark of retrotransposition. Following determination of noncytotoxic concentrations of these metals, pL1RP-EGFP-transfected HepG2 cells were subjected to long-term treatment. Flow cytometry analysis of cells treated with various concentrations of these metals along with quantitative real-time PCR was used to quantify L1 retrotransposition frequencies. Aluminum significantly increased L1 retrotransposition frequency, while no significant association was found concerning lead exposure and L1 retrotransposition. Copper treatment downregulated L1 retrotransposition as a result of EGFP-tagged L1RP expression. Our findings suggest that aluminum might have the potential to cause genomic instability by the enhancement of L1 mobilization. Thus, the risk of induced L1 retrotransposition should be considered during drug safety evaluation and risk assessments of exposure to toxic environmental agents. Further studies are needed for a more robust assay to evaluate any associations between long-term lead exposure and L1 mobility in cell culture assay. 相似文献
49.
Pradeep Kumar Kopparapu Sujata Bhoi Larry Mansouri Laleh S. Arabanian Karla Plevova Sarka Pospisilova 《Epigenetics》2016,11(5):335-343
Downregulation of miR26A1 has been reported in various B-cell malignancies; however, the mechanism behind its deregulation remains largely unknown. We investigated miR26A1 methylation and expression levels in a well-characterized series of chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL). From 450K methylation arrays, we first observed miR26A1 (cg26054057) as uniformly hypermethylated in MCL (n = 24) (all >75%), while CLL (n = 18) showed differential methylation between prognostic subgroups. Extended analysis using pyrosequencing confirmed our findings and real-time quantitative PCR verified low miR26A1 expression in both CLL (n = 70) and MCL (n = 38) compared to normal B-cells. Notably, the level of miR26A1 methylation predicted outcome in CLL, with higher levels seen in poor-prognostic, IGHV-unmutated CLL. Since EZH2 was recently reported as a target for miR26A1, we analyzed the expression levels of both miR26A1 and EZH2 in primary CLL samples and observed an inverse correlation. By overexpression of miR26A1 in CLL and MCL cell lines, reduced EZH2 protein levels were observed using both Western blot and flow cytometry. In contrast, methyl-inhibitor treatment led to upregulated miR26A1 expression with a parallel decrease of EZH2 expression. Finally, increased levels of apoptosis were observed in miR26A1-overexpressing cell lines, further underscoring the functional relevance of miR26A1. In summary, we propose that epigenetic silencing of miR26A1 is required for the maintenance of increased levels of EZH2, which in turn translate into a worse outcome, as shown in CLL, highlighting miR26A1 as a tumor suppressor miRNA. 相似文献
50.
The genetics of stroke 总被引:6,自引:0,他引:6
PURPOSE OF REVIEW: Ischaemic stroke is a heterogeneous disease caused by different pathogenic mechanisms, of which small artery and large artery stroke are the most common. The identification of the genes involved is unclear. The likely candidate genes associated with stroke are those that are associated with matrix deposition (stromelysin-1, MMP3), inflammation (IL-6), and lipid metabolism (hepatic lipase, APOE, PON1) and clotting (factor V Leiden, fibrinogen). RECENT FINDINGS: In this review we will only discuss those genes in which there has been a significant contribution to the understanding of stroke since October 2003. SUMMARY: The published data were reviewed to determine the robustness of these associations and to examine whether there is any evidence of risk modification by factors such as smoking habit, known to be associated with stroke. 相似文献