首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1138篇
  免费   64篇
  国内免费   1篇
  2023年   6篇
  2022年   9篇
  2021年   28篇
  2020年   18篇
  2019年   18篇
  2018年   25篇
  2017年   17篇
  2016年   24篇
  2015年   52篇
  2014年   70篇
  2013年   93篇
  2012年   96篇
  2011年   89篇
  2010年   59篇
  2009年   57篇
  2008年   68篇
  2007年   65篇
  2006年   53篇
  2005年   50篇
  2004年   23篇
  2003年   35篇
  2002年   40篇
  2001年   13篇
  2000年   13篇
  1999年   23篇
  1998年   6篇
  1997年   7篇
  1996年   5篇
  1995年   5篇
  1994年   5篇
  1993年   7篇
  1991年   9篇
  1990年   5篇
  1989年   17篇
  1988年   5篇
  1986年   6篇
  1985年   9篇
  1984年   9篇
  1983年   8篇
  1982年   5篇
  1981年   4篇
  1980年   5篇
  1979年   8篇
  1978年   3篇
  1976年   3篇
  1975年   4篇
  1974年   4篇
  1973年   3篇
  1967年   2篇
  1964年   3篇
排序方式: 共有1203条查询结果,搜索用时 15 毫秒
131.
Vapor-induced transformations of docetaxel anhydrous (form D(A)) under ambient conditions have been studied using methanol, ethanol, and water as the solvent media. The online vapor-induced transformations were monitored by powder X-ray diffractometry. New solid forms (solvates/hydrates/anhydrous) of docetaxel anhydrous were obtained in stoichiometric ratios which were characterized completely using powder X-ray diffraction, differential scanning calorimeter, thermogravimetric analysis, and spectroscopic ((13)C solid-state nuclear magnetic spectroscopy, solution (1)H NMR, and Fourier transform infrared) techniques. The new forms namely methanol solvate (D(M)), ethanol solvate (D(E)), monohydrate (D(MH)), trihydrate (D(TH)), and anhydrous (D(AN-I) and D(AN-II)) were identified through structural analysis.  相似文献   
132.
133.
Deletion mutations within mitochondrial DNA (mtDNA) have been implicated in degenerative and aging related conditions, such as sarcopenia and neuro-degeneration. While the precise molecular mechanism of deletion formation in mtDNA is still not completely understood, genome motifs such as direct repeat (DR) and stem-loop (SL) have been observed in the neighborhood of deletion breakpoints and thus have been postulated to take part in mutagenesis. In this study, we have analyzed the mitochondrial genomes from four different mammals: human, rhesus monkey, mouse and rat, and compared them to randomly generated sequences to further elucidate the role of direct repeat and stem-loop motifs in aging associated mtDNA deletions. Our analysis revealed that in the four species, DR and SL structures are abundant and that their distributions in mtDNA are not statistically different from randomized sequences. However, the average distance between the reported age associated mtDNA breakpoints and their respective nearest DR motifs is significantly shorter than what is expected of random chance in human (p<10(-4)) and rhesus monkey (p = 0.0034), but not in mouse (p = 0.0719) and rat (p = 0.0437), indicating the existence of species specific difference in the relationship between DR motifs and deletion breakpoints. In addition, the frequencies of large DRs (>10 bp) tend to decrease with increasing lifespan among the four mammals studied here, further suggesting an evolutionary selection against stable mtDNA misalignments associated with long DRs in long-living animals. In contrast to the results on DR, the probability of finding SL motifs near a deletion breakpoint does not differ from random in any of the four mtDNA sequences considered. Taken together, the findings in this study give support for the importance of stable mtDNA misalignments, aided by long DRs, as a major mechanism of deletion formation in long-living, but not in short-living mammals.  相似文献   
134.
Several innate and adaptive immune cell types participate in ischemia/reperfusion induced tissue injury. Amongst them, platelets have received little attention as contributors in the process of tissue damage after ischemia reperfusion (I/R) injury. It is currently unknown whether platelets participate through the immunologically important molecules including, CD40 and when activated, CD154 (CD40L), in the pathogenesis of I/R injury. We hypothesized that constitutive expression of CD40 and activation-induced expression of CD154 on platelets mediate local mesenteric and remote lung tissue damage after I/R injury. Wild type (WT; C57BL/6J), CD40 and CD154 deficient mice underwent mesenteric ischemia for 30 minutes followed by reperfusion for 3 hours. WT mice subjected to mesenteric I/R injury displayed both local intestinal and remote lung damage. In contrast, there was significantly less intestinal damage and no remote lung injury in CD40 and CD154 deficient mice when compared to WT mice. Platelet-depleted WT mice transfused with platelets from CD40 or CD154 deficient mice failed to reconstitute remote lung damage. In contrast, when CD40 or CD154 deficient mice were transfused with WT platelets lung tissue damage was re-established. Together, these findings suggest that multiple mechanisms are involved in local and remote tissue injury and also identify platelet-expressed CD40 and/or CD154 as mediators of remote tissue damage.  相似文献   
135.
The modification of virus particles has received a significant amount of attention for its tremendous potential for impacting gene therapy, oncolytic applications and vaccine development.1,2,3 Current approaches to modifying viral surfaces, which are mostly genetics-based, often suffer from attenuation of virus production, infectivity and cellular transduction.4,5 Using chemoselective click chemistry, we have developed a straightforward alternative approach which sidesteps these issues while remaining both highly flexible and accessible.1,2The goal of this protocol is to demonstrate the effectiveness of using bioorthogonal click chemistry to modify the surface of adenovirus type 5 particles. This two-step process can be used both therapeutically1 or analytically,2,6 as it allows for chemoselective ligation of targeting molecules, dyes or other molecules of interest onto proteins pre-labeled with azide tags. The three major advantages of this method are that (1) metabolic labeling demonstrates little to no impact on viral fitness,1,7 (2) a wide array of effector ligands can be utilized, and (3) it is remarkably fast, reliable and easy to access.1,2,7In the first step of this procedure, adenovirus particles are produced bearing either azidohomoalanine (Aha, a methionine surrogate) or the unnatural sugar O-linked N-azidoacetylglucosamine (O-GlcNAz), both of which contain the azide (-N3) functional group. After purification of the azide-modified virus particles, an alkyne probe containing the fluorescent TAMRA moiety is ligated in a chemoselective manner to the pre-labeled proteins or glycoproteins. Finally, an SDS-PAGE analysis is performed to demonstrate the successful ligation of the probe onto the viral capsid proteins. Aha incorporation is shown to label all viral capsid proteins (Hexon, Penton and Fiber), while O-GlcNAz incorporation results in labeling of Fiber only.In this evolving field, multiple methods for azide-alkyne ligation have been successfully developed; however only the two we have found to be most convenient are demonstrated herein – strain-promoted azide-alkyne cycloaddition (SPAAC) and copper-catalyzed azide-alkyne cycloaddition (CuAAC) under deoxygenated atmosphere.  相似文献   
136.
The CYP1A1 gene encodes for the enzyme, aryl hydrocarbon hydroxylase, which is involved in the biotransformation of various aromatic tobacco precarcinogens. In the present study, the association between CYP1A1 gene polymorphisms (IVS1-728G > A, Thr461Asn and Ile462Val), and the risk of oral cancer, was examined among 157 patients with oral cancer and 132 age-matched controls, in a south Indian population. The strength of the association between CYP1A1 variants and oral cancer was estimated by logistic regression. It was found that Thr461Asn was not polymorphic. Both IVS1-728G > A and Ile462Val frequencies were consistent with Hardy-Weinberg equilibrium in the control group. There were no significant differences in genotype or haplotype frequencies between controls and cases with oral cancer. Hence, CYP1A1 SNPs can be considered as not being associated with oral cancer at either the genotype or haplotype levels in the population studied.  相似文献   
137.
Xylooligosaccharides are functional foods mainly produced during the hydrolysis of xylan by physical, chemical, or enzymatic methods. In this study, production of xylobiose was investigated using oil palm empty fruit bunch fiber (OPEFB) as a source material, by chemical and enzymatic methods. Xylanase-specific xylan hydrolysis followed by xylobiose production was observed. Among different xylanases, xylanase from FXY-1 released maximum xylobiose from pretreated OPEFB fiber, and this fungal strain was identified as Aspergillus terreus and subsequently deposited under the accession Number MTCC- 8661. The imperative role of lignin on xylooligosaccharides enzymatic synthesis was exemplified with the notice of xylobiose production only with delignified material. A maximum 262 mg of xylobiose was produced from 1.0 g of pretreated OPEFB fiber using FXY-1 xylanase (6,200 U/ml) at pH 6.0 and 45° C. At optimized environment, the yield of xylobiose was improved to 78.67 g/100 g (based on xylan in the pretreated OPEFB fiber).  相似文献   
138.
The diversity of receptor signaling is increased by receptor heteromerization leading to dynamic regulation of receptor function. While a number of studies have demonstrated that family A G-protein-coupled receptors are capable of forming heteromers in vitro, the role of these heteromers in normal physiology and disease has been poorly explored. In this study, direct interactions between CB1 cannabinoid and delta opioid receptors in the brain were examined. Additionally, regulation of heteromer levels and signaling in a rodent model of neuropathic pain was explored. First we examined changes in the expression, function and interaction of these receptors in the cerebral cortex of rats with a peripheral nerve lesion that resulted in neuropathic pain. We found that, following the peripheral nerve lesion, the expression of both cannabinoid type 1 receptor (CB1R) and the delta opioid receptor (DOR) are increased in select brain regions. Concomitantly, an increase in CB1R activity and decrease in DOR activity was observed. We hypothesize that this decrease in DOR activity could be due to heteromeric interactions between these two receptors. Using a CB1R-DOR heteromer-specific antibody, we found increased levels of CB1R-DOR heteromer protein in the cortex of neuropathic animals. We subsequently examined the functionality of these heteromers by testing whether low, non-signaling doses of CB1R ligands influenced DOR signaling in the cortex. We found that, in cortical membranes from animals that experienced neuropathic pain, non-signaling doses of CB1R ligands significantly enhanced DOR activity. Moreover, this activity is selectively blocked by a heteromer-specific antibody. Together, these results demonstrate an important role for CB1R-DOR heteromers in altered cortical function of DOR during neuropathic pain. Moreover, they suggest the possibility that a novel heteromer-directed therapeutic strategy for enhancing DOR activity, could potentially be employed to reduce anxiety associated with chronic pain.  相似文献   
139.
Scabies is a parasitic infestation of the skin by the mite Sarcoptes scabiei that causes significant morbidity worldwide, in particular within socially disadvantaged populations. In order to identify mechanisms that enable the scabies mite to evade human immune defenses, we have studied molecules associated with proteolytic systems in the mite, including two novel scabies mite serine protease inhibitors (SMSs) of the serpin superfamily. Immunohistochemical studies revealed that within mite-infected human skin SMSB4 (54 kDa) and SMSB3 (47 kDa) were both localized in the mite gut and feces. Recombinant purified SMSB3 and SMSB4 did not inhibit mite serine and cysteine proteases, but did inhibit mammalian serine proteases, such as chymotrypsin, albeit inefficiently. Detailed functional analysis revealed that both serpins interfered with all three pathways of the human complement system at different stages of their activation. SMSB4 inhibited mostly the initial and progressing steps of the cascades, while SMSB3 showed the strongest effects at the C9 level in the terminal pathway. Additive effects of both serpins were shown at the C9 level in the lectin pathway. Both SMSs were able to interfere with complement factors without protease function. A range of binding assays showed direct binding between SMSB4 and seven complement proteins (C1, properdin, MBL, C4, C3, C6 and C8), while significant binding of SMSB3 occurred exclusively to complement factors without protease function (C4, C3, C8). Direct binding was observed between SMSB4 and the complement proteases C1s and C1r. However no complex formation was observed between either mite serpin and the complement serine proteases C1r, C1s, MASP-1, MASP-2 and MASP-3. No catalytic inhibition by either serpin was observed for any of these enzymes. In summary, the SMSs were acting at several levels mediating overall inhibition of the complement system and thus we propose that they may protect scabies mites from complement-mediated gut damage.  相似文献   
140.

Background

Endometriosis is a chronic gynecological benign disease that shares several features similar to malignancy. Mitochondrial DNA (mtDNA) mutations have been reported in all most all types of tumors. However, it is not known as to whether mtDNA mutations are associated with endometriosis.

Methodology

We sequenced the entire mitochondrial genome of analogous ectopic and eutopic endometrial tissues along with blood samples from 32 advanced stage endometriosis patients to analyze the role of somatic and germ-line mtDNA variations in pathogenesis of endometriosis. All ectopic tissues were screened for tumor-specific mtDNA deletions and microsatellite instability (MSI). We also performed mtDNA haplogrouping in 128 patients and 90 controls to identify its possible association with endometriosis risk.

Principal Findings

We identified 51 somatic (novel: 31; reported: 20) and 583 germ-line mtDNA variations (novel: 53; reported: 530) in endometriosis patients. The A13603G, a novel missense mutation which leads to a substitution from serine to glycine at the codon 423 of ND5 gene showed 100% incidence in ectopic tissues. Interestingly, eutopic endometrium and peripheral leukocytes of all the patients showed heteroplasmy (A/G; 40–80%) at this locus, while their ectopic endometrium showed homoplasmic mutant allele (G/G). Superimposition of native and mutant structures of ND5 generated by homology modeling revealed no structural differences. Tumor-specific deletions and MSI were not observed in any of the ectopic tissues. Haplogrouping analysis showed a significant association between haplogroup M5 and endometriosis risk (P: 0.00069) after bonferroni correction.

Conclusions

Our findings substantiate the rationale for exploring the mitochondrial genome as a biomarker for the diagnosis of endometriosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号