首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   6篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   5篇
  2014年   3篇
  2013年   3篇
  2012年   4篇
  2011年   7篇
  2010年   4篇
  2009年   9篇
  2008年   7篇
  2007年   7篇
  2006年   10篇
  2005年   10篇
  2004年   4篇
  2003年   9篇
  2002年   1篇
  2001年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1989年   1篇
  1987年   2篇
  1981年   3篇
  1976年   1篇
  1973年   1篇
  1965年   1篇
排序方式: 共有107条查询结果,搜索用时 56 毫秒
51.
Insulin receptor (IR) signaling cascades have been studied in many tissues, but retinal insulin action has received little attention. Retinal IR signaling and activity were investigated in vivo in rats that were freely fed, fasted, or injected with insulin by phosphotyrosine immunoblotting and by measuring kinase activity. A retina explant system was utilized to investigate the IR signaling cascade, and immunohistochemistry was used to determine which retinal cell layers respond to insulin. Basal IR activity in the retina was equivalent to that in brain and significantly greater than that of liver, and it remained constant between freely fed and fasted rats. Furthermore, IR signaling increased in the retina after portal vein administration of supraphysiological doses of insulin. Ex vivo retinas responded to 10 nM insulin with IR beta-subunit (IRbeta) and IR substrate-2 (IRS-2) tyrosine phosphorylation and AktSer473 phosphorylation. The retina expresses mRNA for all three Akt isoforms as determined by in situ hybridization, and insulin specifically increases Akt-1 kinase activity. Phospho-AktSer473 immunoreactivity increases in retinal nuclear cell layers with insulin treatment. These results demonstrate that the retinal IR signaling cascade to Akt-1 possesses constitutive activity, and that exogenous insulin further stimulates this prosurvival pathway. These findings may have implications in understanding normal and dysfunctional retinal physiology.  相似文献   
52.
Apoptosis is an essential mechanism for the maintenance of somatic tissues, and when dysregulated can lead to numerous pathological conditions. G proteins regulate apoptosis in addition to other cellular functions, but the roles of specific G proteins in apoptosis signaling are not well characterized. Galpha12 stimulates protein phosphatase 2A (PP2A), a serine/threonine phosphatase that modulates essential signaling pathways, including apoptosis. Herein, we examined whether Galpha12 regulates apoptosis in epithelial cells. Inducible expression of Galpha12 or constitutively active (QL)alpha12 in Madin-Darby canine kidney cells led to increased apoptosis with expression of QLalpha12, but not Galpha12. Inducing QLalpha12 led to degradation of the anti-apoptotic protein Bcl-2 (via the proteasome pathway), increased JNK activity, and up-regulated IkappaBalpha protein levels, a potent stimulator of apoptosis. Furthermore, the QLalpha12-stimulated activation of JNK was blocked by inhibiting PP2A. To characterize endogenous Galpha12 signaling pathways, non-transfected MDCK-II and HEK293 cells were stimulated with thrombin. Thrombin activated endogenous Galpha12 (confirmed by GST-tetratricopeptide repeat (TPR) pull-downs) and stimulated apoptosis in both cell types. The mechanisms of thrombin-stimulated apoptosis through endogenous Galpha12 were nearly identical to the mechanisms identified in QLalpha12-MDCK cells and included loss of Bcl-2, JNK activation, and up-regulation of IkappaBalpha. Knockdown of the PP2A catalytic subunit in HEK293 cells inhibited thrombin-stimulated apoptosis, prevented JNK activation, and blocked Bcl-2 degradation. In summary, Galpha12 has a major role in regulating epithelial cell apoptosis through PP2A and JNK activation leading to loss of Bcl-2 protein expression. Targeting these pathways in vivo may lead to new therapeutic strategies for a variety of disease processes.  相似文献   
53.
Rhizoctonia solani is a ubiquitous basidiomycetous soilborne fungal pathogen causing damping-off of seedlings, aerial blights and postharvest diseases. To gain insight into the molecular mechanisms of pathogenesis a global approach based on analysis of expressed sequence tags (ESTs) was undertaken. To get broad gene-expression coverage, two normalized EST libraries were developed from mycelia grown under high nitrogen-induced virulent and low nitrogen/methylglucose-induced hypovirulent conditions. A pilot-scale assessment of gene diversity was made from the sequence analyses of the two libraries. A total of 2280 cDNA clones was sequenced that corresponded to 220 unique sequence sets or clusters (contigs) and 805 singlets, making up a total of 1025 unique genes identified from the two virulence-differentiated cDNA libraries. From the total sequences, 295 genes (38.7%) exhibited strong similarities with genes in public databases and were categorized into 11 functional groups. Approximately 61.3% of the R. solani ESTs have no apparent homologs in publicly available fungal genome databases and are considered unique genes. We have identified several cDNAs with potential roles in fungal pathogenicity, virulence, signal transduction, vegetative incompatibility and mating, drug resistance, lignin degradation, bioremediation and morphological differentiation. A codon-usage table has been formulated based on 14694 R. solani EST codons. Further analysis of ESTs might provide insights into virulence mechanisms of R. solani AG 4 as well as roles of these genes in development, saprophytic colonization and ecological adaptation of this important fungal plant pathogen.  相似文献   
54.
55.
The potential similarity between the brain pathology of idiopathic normal pressure hydrocephalus (iNPH) and Alzheimer disease (AD) is intriguing and thus further studies focusing on the underlying molecular mechanisms may offer valuable information for differential diagnostics and the development of treatments for iNPH. Here, we investigated β- and γ-secretase activities in relation to amyloid-β (Aβ) pathology in the brain tissue samples collected from iNPH and AD patients. β- and γ-secretase activities were measured from the frontal cortical biopsies of 26 patients with suspected iNPH as well as post-mortem tissue samples from the inferior temporal cortex of 74 AD patients and eight subjects without neurofibrillary pathology. In iNPH samples with detectable Aβ plaques, γ-secretase activity was significantly increased (∼1.6-fold) when compared to iNPH samples without Aβ plaques (p = 0.009). In the AD samples, statistically significant differences in the γ-secretase activity were not observed with respect to disease severity (mild, moderate and severe AD according to neurofibrillary pathology). Conversely, β-secretase activity was unaltered in iNPH samples with or without Aβ plaques, while it was significantly increased in relation to disease severity in the AD patients. These results show for the first time increased γ-secretase but not β-secretase activity in the biopsy samples from the frontal cortex of iNPH patients with AD-like Aβ pathology. Conversely, the opposite was observed in these secretase activities in AD patients with respect to neurofibrillary pathology. Despite the resemblances in the Aβ pathology, iNPH and AD patients appear to have marked differences in the cellular mechanisms responsible for the production of Aβ.  相似文献   
56.
Copper (I) promoted [3+2] Huisgen cycloaddition of azides with terminal alkynes was used to prepare triazole-containing macrocycles based on the Grb2 SH2 domain-binding motif, 'Pmp-Ac(6)c-Asn', where Pmp and Ac(6)c stand for 4-phosphonomethylphenylalanine and 1-aminocyclohexanecarboxylic acid, respectively. When cycloaddition reactions were conducted at 1mM substrate concentrations, cyclization of monomeric units occurred. At 2mM substrate concentrations the predominant products were macrocyclic dimers. In Grb2 SH2 domain-binding assays the monomeric (S)-Pmp-containing macrocycle exhibited a K(d) value of 0.23microM, while the corresponding dimeric macrocycle was found to have greater than 50-fold higher affinity. The open-chain dimer was also found to have affinity equal to the dimeric macrocycle. This work represents the first application of 'click chemistry' to the synthesis of SH2 domain-binding inhibitors and indicates its potential utility.  相似文献   
57.
Corneal keratocyte migration can impact both corneal clarity and refractive outcome following injury or refractive surgery. In this study, we investigated how culture conditions, ECM properties, and Rho kinase activity regulate the mechanics of keratocyte migration, using a nested collagen matrix model. Time-lapse imaging demonstrated that both serum and PDGF stimulate keratocyte migration into the outer matrix. Although the velocity of cell migration was similar, cells in serum were bipolar and induced significant matrix deformation during migration, whereas PDGF induced extension of branching dendritic processes with smaller, more localized force generation. These differences in cell-induced matrix reorganization were verified with a global matrix contraction assay and confocal reflection imaging, using both bovine and rat tail collagen. When constructs were detached from the substrate to lower the effective stiffness, migration was significantly reduced in serum; but was unchanged in PDGF. These differences in migration mechanics were mediated, in part, by Rho kinase. Overall, corneal keratocytes can effectively migrate through collagen matrices using varying degrees of cellular force generation. Low-contractility migration may facilitate keratocyte repopulation of the stroma following surgery or injury, without altering the structural and mechanical properties that are critical to maintaining corneal transparency.  相似文献   
58.
59.
Tryptophan hydroxylase (TPH) is a key enzyme in the synthesis of serotonin. As a neurotransmitter, serotonin plays important physiological roles both peripherally and centrally. Here we describe the discovery of substituted triazines as a novel class of tryptophan hydroxylase inhibitors. This class of TPH inhibitors can selectively reduce serotonin levels in murine intestine after oral administration without affecting levels in the brain. These TPH inhibitors may provide novel treatments for gastrointestinal disorders associated with dysregulation of the serotonergic system, such as chemotherapy-induced emesis and irritable bowel syndrome.  相似文献   
60.
Objectives  Patients with renal cell carcinomas (RCC) have few treatment options, underscoring the importance of developing new approaches such as immunotherapy. However, few tumor associated antigens (TAA), which can be targeted by immunotherapy, have been identified for this type of cancer. von Hippel-Lindau clear cell RCC (VHL−/−RCC) are characterized by mutations in the VHL tumor suppressor gene. Loss of VHL function causes the overexpression of transforming growth factor (TGF)-α, leading us to hypothesize that TGF-α could be a potential TAA for immunotherapy of kidney cancer, which was evaluated in this study. Methods and results  We first confirmed the absent or weak expression of TGF-α in important normal tissues as well as its overexpression in 61% of renal tumors in comparison to autologous normal kidney tissues. In addition, we demonstrated the immunogenicity of TGF-α, by expanding many T cell lines specific for certain TGF-α peptides or the mature TGF-α protein, when presented by major histocompatibility complex (MHC) molecules on the surface of antigen-presenting cells. Interestingly, some of these TGF-α-specific T cells were polyfunctionals and secreted IFN-γ, TNF-α and IL-2. Conclusion  We have shown that TGF-α is a valid candidate TAA, which should allow the development of a targeted immunotherapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号