首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13013篇
  免费   893篇
  国内免费   17篇
  2024年   15篇
  2023年   47篇
  2022年   178篇
  2021年   266篇
  2020年   178篇
  2019年   216篇
  2018年   343篇
  2017年   297篇
  2016年   495篇
  2015年   745篇
  2014年   873篇
  2013年   942篇
  2012年   1163篇
  2011年   1061篇
  2010年   615篇
  2009年   577篇
  2008年   796篇
  2007年   786篇
  2006年   683篇
  2005年   615篇
  2004年   581篇
  2003年   514篇
  2002年   412篇
  2001年   284篇
  2000年   247篇
  1999年   181篇
  1998年   77篇
  1997年   63篇
  1996年   53篇
  1995年   62篇
  1994年   34篇
  1993年   23篇
  1992年   63篇
  1991年   37篇
  1990年   43篇
  1989年   40篇
  1988年   34篇
  1987年   26篇
  1986年   20篇
  1985年   28篇
  1984年   25篇
  1983年   17篇
  1982年   20篇
  1981年   11篇
  1979年   18篇
  1978年   15篇
  1976年   11篇
  1974年   14篇
  1973年   13篇
  1971年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
171.
Epstein-Barr virus (EBV) is a B-lymphotropic human herpes virus that infects B lymphocytes and is associated with a broad spectrum of benign and malignant diseases. B cell infection by EBV causes indefinite cell proliferation that results in the development of immortalized lymphoblastoid cell lines (LCLs). We found that SNU-1103, a latency type III EBV-transformed LCL developed from a Korean cancer patient, resisted the G1 arrest that was normally caused by serum starvation. Western blot analyses revealed several alterations in the expression of key regulatory cell cycle proteins involved in the G1 phase. High expression of cyclin D2 and time-dependent increases in cyclin-dependent kinase 6 (CDK6) and cyclin D3 were observed in SNU-1103 during serum starvation. Very unexpectedly, in SNU-1103, the key G1 phase CDK inhibitor p21CiP1 was expressed at a consistently high level, while p27KiP1 expression was increased. Of three pRb family proteins, pRb expression was reduced and it became hypophosphorylated in SNU-1103 during serum starvation. Instead, p107 and p130 were expressed at consistently high levels in SNU-1103 during serum starvation. In conclusion, compared with an EBV-negative BJAB cell line, multiple cell cycle regulatory proteins were abnormally or inversely expressed in SNU-1103 during serum starvation.  相似文献   
172.
A bacterial strain named AB-4 showing algicidal activity against Chattonella marina was isolated from coastal water of ULjin, Republic of Korea. The isolated strain was identified as Bacillus sp. by culture morphology, biochemical reactions, and homology research based on 16S rDNA. The bacterial culture led to the lysis of algal cells, suggesting that the isolated strain produced a latent algal-lytic compound. Amongst changes in algicidal activity by different culture filtrate volumes, the 10% (100 μl/ml) concentration showed the biggest change in algicidal activity; there, estimated algicidal activity was 95%. The swimming movements of Chattonella marina cells were inhibited because of treatment of the bacterial culture; subsequently, Chattonella marina cells became swollen and rounded. With longer exposure time, algal cells were disrupted and cellular components lost their integrity and decomposed. The released algicide(s) were heat-tolerant and stable in pH variations, except pH 3, 4, and 5. Culture filtrate of Bacillus sp. AB-4 was toxic against harmful algae bloom (HAB) species and nontoxic against livefood organisms. Bacillus sp. AB-4 showed comparatively strong activity against Akashiwo sanguinea, Fibriocapsa japonica, Heterosigma akashiwo, and Scrippsiella trochoidea. These results suggest that the algicidal activity of Bacillus sp. AB-4 is potentially useful for controlling outbreaks of Chattonella marina.  相似文献   
173.
174.
175.
Sohn JW  Yu WJ  Lee D  Shin HS  Lee SH  Ho WK 《PloS one》2011,6(10):e26625
Group I metabotropic glutamate receptors (group I mGluRs; mGluR1 and mGluR5) exert diverse effects on neuronal and synaptic functions, many of which are regulated by intracellular Ca2+. In this study, we characterized the cellular mechanisms underlying Ca2+ mobilization induced by (RS)-3,5-dihydroxyphenylglycine (DHPG; a specific group I mGluR agonist) in the somata of acutely dissociated rat hippocampal neurons using microfluorometry. We found that DHPG activates mGluR5 to mobilize intracellular Ca2+ from ryanodine-sensitive stores via cyclic adenosine diphosphate ribose (cADPR), while the PLC/IP3 signaling pathway was not involved in Ca2+ mobilization. The application of glutamate, which depolarized the membrane potential by 28.5±4.9 mV (n = 4), led to transient Ca2+ mobilization by mGluR5 and Ca2+ influx through L-type Ca2+ channels. We found no evidence that mGluR5-mediated Ca2+ release and Ca2+ influx through L-type Ca2+ channels interact to generate supralinear Ca2+ transients. Our study provides novel insights into the mechanisms of intracellular Ca2+ mobilization by mGluR5 in the somata of hippocampal neurons.  相似文献   
176.
IgA nephropathy (IgAN), major cause of kidney failure worldwide, is common in Asians, moderately prevalent in Europeans, and rare in Africans. It is not known if these differences represent variation in genes, environment, or ascertainment. In a recent GWAS, we localized five IgAN susceptibility loci on Chr.6p21 (HLA-DQB1/DRB1, PSMB9/TAP1, and DPA1/DPB2 loci), Chr.1q32 (CFHR3/R1 locus), and Chr.22q12 (HORMAD2 locus). These IgAN loci are associated with risk of other immune-mediated disorders such as type I diabetes, multiple sclerosis, or inflammatory bowel disease. We tested association of these loci in eight new independent cohorts of Asian, European, and African-American ancestry (N = 4,789), followed by meta-analysis with risk-score modeling in 12 cohorts (N = 10,755) and geospatial analysis in 85 world populations. Four susceptibility loci robustly replicated and all five loci were genome-wide significant in the combined cohort (P = 5×10−32–3×10−10), with heterogeneity detected only at the PSMB9/TAP1 locus (I2 = 0.60). Conditional analyses identified two new independent risk alleles within the HLA-DQB1/DRB1 locus, defining multiple risk and protective haplotypes within this interval. We also detected a significant genetic interaction, whereby the odds ratio for the HORMAD2 protective allele was reversed in homozygotes for a CFHR3/R1 deletion (P = 2.5×10−4). A seven–SNP genetic risk score, which explained 4.7% of overall IgAN risk, increased sharply with Eastward and Northward distance from Africa (r = 0.30, P = 3×10−128). This model paralleled the known East–West gradient in disease risk. Moreover, the prediction of a South–North axis was confirmed by registry data showing that the prevalence of IgAN–attributable kidney failure is increased in Northern Europe, similar to multiple sclerosis and type I diabetes. Variation at IgAN susceptibility loci correlates with differences in disease prevalence among world populations. These findings inform genetic, biological, and epidemiological investigations of IgAN and permit cross-comparison with other complex traits that share genetic risk loci and geographic patterns with IgAN.  相似文献   
177.
Major histocompatibility complex (MHC)-homozygous Xenopus laevis were rendered tolerant to semi-allogeneic antigens by grafting skins of adult frogs during larval stages (larvally induced tolerance), and this tolerant state was compared with the tolerance induced in early thymectomized frogs by the grafting of semi-allogeneic nonlymphoid thymuses (thymus-reconstituted tolerance). In contrast to a total inability of thymus-reconstituted frogs both to reject skins and to exhibit a mixed leukocyte reaction (MLR) against the semi-allogeneic donor, larvally induced tolerant frogs showed a strong MLR against leukocytes of the tolerizing skin donor (split tolerance). Breakdown of the tolerant state in thymus-reconstituted frogs were easily accomplished by inoculation with syngeneic splenocytes, but this breakdown was extremely difficult to achieve in frogs with larvally induced tolerance. The injection of splenocytes from larvally induced tolerant frogs into normal frogs significantly suppressed semi-allogeneic graft rejection in the latter group; no suppression was obtained when splenocytes from thymus-reconstituted frogs were used. In addition, in the thymectomized frogs, recovery of allograft rejection capacity against the pertinent semi-allogeneic antigens were suppressed by the injection of splenocytes from larvally induced tolerant frogs, with the degree of suppression depending on the splenocyte dose. These results indicate that the larvally induced tolerant state is maintained by specifically induced suppressor cells affecting the in vivo allograft response but not the MLR.  相似文献   
178.
179.
The conditions for induction of B-cell inducing factor (BIF) by human peripheral blood T cells was investigated. BIF was assayed by induction of immunoglobulin secreting cells (ISC) in peripheral blood B (non-T) cells stimulated with Staphylococcus aureus bacteria strain Cowan I (Sac), and in the IgM cell line SKW6.4. Maximum BIF production occurred with high concentrations of the T-cell mitogens phytohemagglutinin, concanavalin A, and PWM. Dexamethasone (Dex) also induced BIF production in T cells at 10(-5) to 10(-7) M. At 10(-5) and 10(-6) M Dex, the T-cell supernatants had to be dialyzed before testing because Dex alone stimulated variable levels of ISC in both test B-cell assays. Dex did not enhance BIF production by T cells that were optimally stimulated by lectin. BIF levels were maximum by Day 2 of T-cell cultures and remained high at Days 3 and 4. In contrast, IL-2 reached a peak at Day 1 and declined drastically by Day 4. We previously showed that IL-2 at less than 100 U/ml did not induce ISC in B cells and did not alter ISC induction by BIF. Dex did not induce IL-2 production and inhibited IL-2 production induced by Con A, in contrast to the promoting effects of Dex on BIF production, providing further evidence for the independence of BIF and IL-2 production and B-cell stimulation.  相似文献   
180.
Insulin contains two inter-chain disulfide bonds between the A and B chains (A7-B7 and A20-B19), and one intra-chain linkage in the A chain (A6-A11). To investigate the role of each disulfide bond in the structure, function and stability of the molecule, three des mutants of human insulin, each lacking one of the three disulfide bonds, were prepared by enzymatic conversion of refolded mini-proinsulins. Structural and biological studies of the three des mutants revealed that all three disulfide bonds are essential for the receptor binding activity of insulin, whereas the different disulfide bonds make different contributions to the overall structure of insulin. Deletion of the A20-B19 disulfide bond had the most substantial influence on the structure as indicated by loss of ordered secondary structure, increased susceptibility to proteolysis, and markedly reduced compactness. Deletion of the A6-A11 disulfide bond caused the least perturbation to the structure. In addition, different refolding efficiencies between the three des mutants suggest that the disulfide bonds are formed sequentially in the order A20-B19, A7-B7 and A6-A11 in the folding pathway of proinsulin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号