首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1562篇
  免费   105篇
  2023年   27篇
  2022年   30篇
  2021年   54篇
  2020年   51篇
  2019年   52篇
  2018年   59篇
  2017年   60篇
  2016年   75篇
  2015年   76篇
  2014年   101篇
  2013年   112篇
  2012年   137篇
  2011年   111篇
  2010年   73篇
  2009年   53篇
  2008年   81篇
  2007年   57篇
  2006年   78篇
  2005年   52篇
  2004年   51篇
  2003年   40篇
  2002年   46篇
  2001年   27篇
  2000年   29篇
  1999年   22篇
  1998年   5篇
  1997年   7篇
  1996年   7篇
  1994年   2篇
  1993年   4篇
  1992年   5篇
  1991年   4篇
  1990年   13篇
  1989年   6篇
  1988年   7篇
  1987年   5篇
  1986年   3篇
  1985年   4篇
  1984年   4篇
  1981年   3篇
  1979年   4篇
  1978年   2篇
  1977年   4篇
  1976年   2篇
  1974年   5篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
  1966年   3篇
  1960年   1篇
排序方式: 共有1667条查询结果,搜索用时 31 毫秒
61.
Capsule The Skylark Alauda arvensis had the highest overall mortality in ten Northern Portuguese wind farms surveyed between 2006 and 2011. Analysis from the integration of conventional and molecular techniques suggest a sex and age biased mortality affecting mainly adult males (90.9%), which may be related to their characteristic breeding male song-flights making them highly vulnerable to collision with wind turbines. The results highlight the added value of more complete population impact assessments that go beyond simple carcass identification at wind farms.  相似文献   
62.
Cohesion between sister chromatids, mediated by the chromosomal cohesin complex, is a prerequisite for their alignment on the spindle apparatus and segregation in mitosis. Budding yeast cohesin first associates with chromosomes in G1. Then, during DNA replication in S-phase, the replication fork-associated acetyltransferase Eco1 acetylates the cohesin subunit Smc3 to make cohesin’s DNA binding resistant to destabilization by the Wapl protein. Whether stabilization of cohesin molecules that happen to link sister chromatids is sufficient to build sister chromatid cohesion, or whether additional reactions are required to establish these links, is not known. In addition to Eco1, several other factors contribute to cohesion establishment, including Ctf4, Ctf18, Tof1, Csm3, Chl1 and Mrc1, but little is known about their roles. Here, we show that each of these factors facilitates cohesin acetylation. Moreover, the absence of Ctf4 and Chl1, but not of the other factors, causes a synthetic growth defect in cells lacking Eco1. Distinct from acetylation defects, sister chromatid cohesion in ctf4Δ and chl1Δ cells is not improved by removing Wapl. Unlike previously thought, we do not find evidence for a role of Ctf4 and Chl1 in Okazaki fragment processing, or of Okazaki fragment processing in sister chromatid cohesion. Thus, Ctf4 and Chl1 delineate an additional acetylation-independent pathway that might hold important clues as to the mechanism of sister chromatid cohesion establishment.  相似文献   
63.
Cotton pests damaging fruiting bodies (squares and young bolls) are difficult to control and their damage results in direct yield loss. Small growers, with low technological inputs, represent a large portion of cotton growers worldwide comprising more than 76 countries; they rely mainly on cultural practices to counteract pest attack in their crops. Boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae), oviposition involves puncturing cotton squares and young bolls, causing abscission. We examined the impact on boll weevil population of collecting abscised cotton fruiting bodies and clipping plant terminals at 50% boll maturation in the field during two cotton‐growing seasons and under field cage conditions. Greatest numbers of damaged squares occurred ca. 117 days after planting and clipped plants resulted in reduction of abscised structures and adult boll weevils compared with non‐clipped plants, irrespective of cotton variety. Damaged young bolls were found ca. 128 days after planting in 2009 and 2011, but clipping had no effect. Numbers of boll weevils found in plants of the varieties BRS 201 and BRS Rubi (both in 2009) and BRS Rubi (in 2011) were, respectively, 13‐, 17‐, and 20‐fold greater when clipping plus collecting abscised fruiting bodies were not practiced. Furthermore, the average percentage of the boll weevil parasitoid Bracon vulgaris Ashmead (Hymenoptera: Braconidae) emerging from abscised and collected structures was similar between clipped and non‐clipped plant terminals in both seasons. Clipping plant terminals did not result in yield reduction and reduced adult boll weevil production. Collecting abscised reproductive structures, clipping plant terminals, and using both practices together reduced boll weevil populations by as much as 63, 57, and 79%, respectively, in cage trials. Thus, these practices cause significant impact on boll weevil populations and are feasible of adoption, especially for smallholder cotton growers.  相似文献   
64.
The MtrCDE multidrug pump, from Neisseria gonorrhoeae, is assembled from the inner and outer membrane proteins MtrD and MtrE, which are connected by the periplasmic membrane fusion protein MtrC. Although it is clear that MtrD delivers drugs to the channel of MtrE, it remains unclear how drug delivery and channel opening are connected. We used a vancomycin sensitivity assay to test for opening of the MtrE channel. Cells expressing MtrE or MtrE‐E434K were insensitive to vancomycin; but became moderately and highly sensitive to vancomycin respectively, when coexpressed with MtrC, suggesting that the MtrE channel opening requires MtrC binding and is energy‐independent. Cells expressing wild‐type MtrD, in an MtrCE background, were vancomycin‐insensitive, but moderately sensitive in an MtrCE‐E434K background. The mutation of residues involved in proton translocation inactivated MtrD and abolished drug efflux, rendered both MtrE and MtrE‐E434K vancomycin‐insensitive; imply that the pump–component interactions are preserved, and that the complex is stable in the absence of proton flux, thus sealing the open end of MtrE. Following the energy‐dependent dissociation of the tripartite complex, the MtrE channel is able to reseal, while MtrE‐E434K is unable to do so, resulting in the vancomycin‐sensitive phenotype. Thus, our findings suggest that opening of the OMP via interaction with the MFP is energy‐independent, while both drug export and complex dissociation require active proton flux.  相似文献   
65.
The demand for biomaterials with properties that provide sustained release of substances with pharmacological interest is constant. One candidate for applications in this area is the Natural Rubber Latex (NRL) extracted from the rubber tree Hevea brasiliensis. Recent studies indicate the NRL as a matrix for sustained release, showing promising results for biomedical applications such as: can stimulate natural angiogenesis and is capable of adhering cells on its surface, promoting the replacement and regeneration of tissue. So, the NRL is an excellent candidate to propitiate the sustained release of peptides of pharmacological interest such as oxytocin, a hormonal peptide which has the function to promote uterine muscle contractions and reduce bleeding during childbirth, and stimulate the release of breast milk. Results demonstrated that 90 μg mL?1 (45 %) of the incorporated peptide in Natural Rubber Latex Biomedical (NRLb) functionalized membranes was released at 10 h in phosphate-buffered saline (PBS) solution. Swelling kinetics assay showed that the NRLb membranes are able to absorb over a period of 16 h up to 1.08 grams of water per grams of membrane. Scanning electron microscopy showed that the peptide was adsorbed on the surface and within NRLb membrane. Fourier transform infrared and Derivative Thermogravimetric analysis indicated that oxytocin did not interacted chemically with the membrane. Furthermore, hemolysis of erythrocytes, quantified spectrophotometrically using materials (Oxytocin, NRLb, and NRLb + Oxytocin) showed no hemolytic effects up to 100 μg mL?1 (compounds and mixtures), indicating no detectable disturbance of the red blood cell membranes. Based on these results it was possible to conclude that the NRLb has shown effectiveness as a model in the release of peptides with pharmacological interest.  相似文献   
66.
Grazing mollusks are used as a food resource worldwide, and limpets are harvested commercially for both local consumption and export in several countries. This study describes a field experiment to assess the effects of simulated human exploitation of limpets Patella vulgata on their population ecology in terms of protandry (age‐related sex change from male to female), growth, recruitment, migration, and density regulation. Limpet populations at two locations in southwest England were artificially exploited by systematic removal of the largest individuals for 18 months in plots assigned to three treatments at each site: no (control), low, and high exploitation. The shell size at sex change (L50: the size at which there is a 50:50 sex ratio) decreased in response to the exploitation treatments, as did the mean shell size of sexual stages. Size‐dependent sex change was indicated by L50 occurring at smaller sizes in treatments than controls, suggesting an earlier switch to females. Mean shell size of P. vulgata neuters changed little under different levels of exploitation, while males and females both decreased markedly in size with exploitation. No differences were detected in the relative abundances of sexual stages, indicating some compensation for the removal of the bigger individuals via recruitment and sex change as no migratory patterns were detected between treatments. At the end of the experiment, 0–15 mm recruits were more abundant at one of the locations but no differences were detected between treatments. We conclude that sex change in P. vulgata can be induced at smaller sizes by reductions in density of the largest individuals reducing interage class competition. Knowledge of sex‐change adaptation in exploited limpet populations should underpin strategies to counteract population decline and improve rocky shore conservation and resource management.  相似文献   
67.
Silicosis is an occupational lung disease with no effective treatment. We hypothesized that dasatinib, a tyrosine kinase inhibitor, might exhibit therapeutic efficacy in silica-induced pulmonary fibrosis. Silicosis was induced in C57BL/6 mice by a single intratracheal administration of silica particles, whereas the control group received saline. After 14 days, when the disease was already established, animals were randomly assigned to receive DMSO or dasatinib (1 mg/kg) by oral gavage, twice daily, for 14 days. On day 28, lung morphofunction, inflammation, and remodeling were investigated. RAW 264.7 cells (a macrophage cell line) were incubated with silica particles, followed by treatment or not with dasatinib, and evaluated for macrophage polarization. On day 28, dasatinib improved lung mechanics, increased M2 macrophage counts in lung parenchyma and granuloma, and was associated with reduction of fraction area of granuloma, fraction area of collapsed alveoli, protein levels of tumor necrosis factor-α, interleukin-1β, transforming growth factor-β, and reduced neutrophils, M1 macrophages, and collagen fiber content in lung tissue and granuloma in silicotic animals. Additionally, dasatinib reduced expression of iNOS and increased expression of arginase and metalloproteinase-9 in silicotic macrophages. Dasatinib was effective at inducing macrophage polarization toward the M2 phenotype and reducing lung inflammation and fibrosis, thus improving lung mechanics in a murine model of acute silicosis.  相似文献   
68.
69.
Protein misfolding, aggregation and deposition in the brain, in the form of amyloid, are implicated in the etiology of several neurodegenerative disorders, such as Alzheimer’s, Parkinson’s and prion diseases. Drugs available on the market reduce the symptoms, but they are not a cure. Therefore, it is urgent to identify promising targets and develop effective drugs. Preservation of protein native conformation and/or inhibition of protein aggregation seem pertinent targets for drug development. Several studies have shown that organic solutes, produced by extremophilic microorganisms in response to osmotic and/or heat stress, prevent denaturation and aggregation of model proteins. Among these stress solutes, mannosylglycerate, mannosylglyceramide, di-myo-inositol phosphate, diglycerol phosphate and ectoine are effective in preventing amyloid formation by Alzheimer’s Aβ peptide and/or α-synuclein in vitro. Moreover, mannosylglycerate is a potent inhibitor of Aβ and α-synuclein aggregation in living cells, and mannosylglyceramide and ectoine inhibit aggregation and reduce prion peptide-induced toxicity in human cells. This review focuses on the efficacy of stress solutes from hyper/thermophiles and ectoines to prevent amyloid formation in vitro and in vivo and their potential application in drug development against protein misfolding diseases. Current and envisaged applications of these extremolytes in neurodegenerative diseases and healthcare will also be addressed.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号