首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   615篇
  免费   45篇
  2024年   4篇
  2023年   8篇
  2022年   17篇
  2021年   14篇
  2020年   19篇
  2019年   23篇
  2018年   26篇
  2017年   22篇
  2016年   22篇
  2015年   34篇
  2014年   26篇
  2013年   35篇
  2012年   56篇
  2011年   41篇
  2010年   28篇
  2009年   20篇
  2008年   32篇
  2007年   27篇
  2006年   26篇
  2005年   29篇
  2004年   22篇
  2003年   18篇
  2002年   13篇
  2001年   5篇
  2000年   5篇
  1999年   7篇
  1998年   4篇
  1997年   4篇
  1996年   2篇
  1994年   2篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1988年   3篇
  1984年   2篇
  1983年   3篇
  1979年   3篇
  1977年   2篇
  1976年   2篇
  1975年   5篇
  1974年   4篇
  1973年   4篇
  1972年   4篇
  1971年   2篇
  1970年   7篇
  1969年   2篇
  1968年   3篇
  1967年   2篇
  1966年   2篇
  1960年   1篇
排序方式: 共有660条查询结果,搜索用时 46 毫秒
11.
12.
PurposeDespite the developments in conventional transvenous pacemakers (VVI-PM), the procedure is still associated with significant complications. Although there are no prospective clinical trials that compared VVI-PM with transcatheter pacemaker systems (TPS).MethodsThis is a prospective, observational, single-center study that included all patients with an indication for a single-chamber pacemaker implant within a 4-year period. All clinical, ECG and echocardiographic characteristics at implant, electrical parameters, associated complications and mortality were analyzed. A Cox survival model and a Bayesian cohort analysis were performed for differences in complication rates between groups.ResultsThere were 443 patients included (198 TPS and 245 VVI-PM). The mean age was 81.5 years (TPS group, 79.2 ± 6.6 years; VVI-PM group, 83.5 ± 8.9 years). There was a male predominance in TPS group (123, 62.1% vs. 67, 27.3%; p < 0.001). The presence of systolic dysfunction and renal insufficiency were more frequent in VVI-PM group than in TPS patients. Mean follow-up was 22.3 ± 15.9 months. In a multivariable paired data the TPS group presented fewer complications than VVI-PM group (HR = 0.39 [0.15–0.98], p-value 0.013), but major complications were not different (6, 3% vs 14, 5.6% respectively, p = 0.1761). There was no difference in the mortality rate between the groups. The TPS group had less risk than VVI-PM group to have a complication, with a 96% of probability.ConclusionsTPS patients had a lower overall complication rate than VVI-PM patients including matched-pair samples using a Bayesian analysis. These results confirm the safety profile of TPS in clinical practice.  相似文献   
13.
Dental tissue-derived stem cells (DSCs) provide an easy, accessible, relatively noninvasive promising source of adult stem cells (ASCs), which brought encouraging prospective for their clinical applications. DSCs provide a perfect opportunity to apply for a patient's own ASC, which poses a low risk of immune rejection. However, problems associated with the long-term culture of stem cells, including loss of proliferation and differentiation capacities, senescence, genetic instability, and the possibility of microbial contamination, make cell banking necessary. With the rapid development of advanced cryopreservation technology, various international DSC banks have been established for both research and clinical applications around the world. However, few studies have been published that provide step-by-step guidance on DSCs isolation and banking methods. The purpose of this review is to present protocols and technical details for all steps of cryopreserved DSCs, from donor selection, isolation, cryopreservation, to characterization and quality control. Here, the emphasis is on presenting practical principles in accordance with the available valid guidelines.  相似文献   
14.
15.
Defining the pharmacological target(s) of currently used drugs and developing new analogues with greater potency are both important aspects of the search for agents that are effective against drug-sensitive and drug-resistant Mycobacterium tuberculosis. Thiacetazone (TAC) is an anti-tubercular drug that was formerly used in conjunction with isoniazid, but removed from the antitubercular chemotherapeutic arsenal due to toxic side effects. However, several recent studies have linked the mechanisms of action of TAC to mycolic acid metabolism and TAC-derived analogues have shown increased potency against M. tuberculosis. To obtain new insights into the molecular mechanisms of TAC resistance, we isolated and analyzed 10 mutants of M. tuberculosis that were highly resistant to TAC. One strain was found to be mutated in the methyltransferase MmaA4 at Gly101, consistent with its lack of oxygenated mycolic acids. All remaining strains harbored missense mutations in either HadA (at Cys61) or HadC (at Val85, Lys157 or Thr123), which are components of the β-hydroxyacyl-ACP dehydratase complex that participates in the mycolic acid elongation step. Separately, a library of 31 new TAC analogues was synthesized and evaluated against M. tuberculosis. Two of these compounds, 15 and 16, exhibited minimal inhibitory concentrations 10-fold lower than the parental molecule, and inhibited mycolic acid biosynthesis in a dose-dependent manner. Moreover, overexpression of HadAB HadBC or HadABC in M. tuberculosis led to high level resistance to these compounds, demonstrating that their mode of action is similar to that of TAC. In summary, this study uncovered new mutations associated with TAC resistance and also demonstrated that simple structural optimization of the TAC scaffold was possible and may lead to a new generation of TAC-derived drug candidates for the potential treatment of tuberculosis as mycolic acid inhibitors.  相似文献   
16.
Somatic transposon mutagenesis in mice is an efficient strategy to investigate the genetic mechanisms of tumorigenesis. The identification of tumor driving transposon insertions traditionally requires the generation of large tumor cohorts to obtain information about common insertion sites. Tumor driving insertions are also characterized by their clonal expansion in tumor tissue, a phenomenon that is facilitated by the slow and evolving transformation process of transposon mutagenesis. We describe here an improved approach for the detection of tumor driving insertions that assesses the clonal expansion of insertions by quantifying the relative proportion of sequence reads obtained in individual tumors. To this end, we have developed a protocol for insertion site sequencing that utilizes acoustic shearing of tumor DNA and Illumina sequencing. We analyzed various solid tumors generated by PiggyBac mutagenesis and for each tumor >106 reads corresponding to >104 insertion sites were obtained. In each tumor, 9 to 25 insertions stood out by their enriched sequence read frequencies when compared to frequencies obtained from tail DNA controls. These enriched insertions are potential clonally expanded tumor driving insertions, and thus identify candidate cancer genes. The candidate cancer genes of our study comprised many established cancer genes, but also novel candidate genes such as Mastermind-like1 (Mamld1) and Diacylglycerolkinase delta (Dgkd). We show that clonal expansion analysis by high-throughput sequencing is a robust approach for the identification of candidate cancer genes in insertional mutagenesis screens on the level of individual tumors.  相似文献   
17.
Mimicking the structure of extracellular matrix (ECM) of myocardium is necessary for fabrication of functional cardiac tissue. The superparamagnetic iron oxide nanoparticles (SPIONs, Fe3O4), as new generation of magnetic nanoparticles (NPs), are highly intended in biomedical studies. Here, SPION NPs (1 wt%) were synthesized and incorporated into silk-fibroin (SF) electrospun nanofibers to enhance mechanical properties and topography of the scaffolds. Then, the mouse embryonic cardiac cells (ECCs) were seeded on the scaffolds for in vitro studies. The SPION NPs were studied by scanning electron microscope (SEM), X-ray diffraction (XRD), and transmission electron microscope (TEM). SF nanofibers were characterized after incorporation of SPIONs by SEM, TEM, water contact angle measurement, and tensile test. Furthermore, cytocompatibility of scaffolds was confirmed by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. SEM images showed that ECCs attached to the scaffolds with elongated morphologies. Also, the real-time PCR and immunostaining studies approved upregulation of cardiac functional genes in ECCs seeded on the SF/SPION-casein scaffolds including GATA-4, cardiac troponin T, Nkx 2.5, and alpha-myosin heavy chain, compared with the ones in SF. In conclusion, incorporation of core-shells in SF supports cardiac differentiation, while has no negative impact on ECCs' proliferation and self-renewal capacity.  相似文献   
18.
The extracellular matrix of different mammalian tissues is commonly used as scaffolds in the field of tissue engineering. One of these tissues, which has frequently been studied due to its structural and biological features, is the small intestine submucosal membrane. These research are mainly done on the porcine small intestine. However, a report has recently been published about a scaffold produced from the submucosal layer of the ovine small intestine. In the present study, ovine small intestine submucosal (OSIS) was decellularized in a modified manner and its histological, morphological, and biomechanical properties were studied. Decellularization was performed in two phases: physical and chemical. In this method, a chloroform-methanol mixture, enzymatic digestion, and a constant dose of sodium dodecyl sulfate (SDS) was used in the least agitation time and its histological property and biocompatibility were evaluated in the presence of adipose tissue-derived stem cells (ADSCs); furthermore, ADSCs were isolated with a simple method (modified physical washing non-enzymatic isolation). The results were showed that the use of OSIS could be effective and operative. Mechanical properties, histological structure and shape, and glycosaminoglycan content were preserved. In the SDS-treated group, more than 90% of the native cells of tissue were deleted, and also in this group, no toxicity was observed and cell proliferation was supported, compared to the untreated group. Therefore, our results indicate that ADSCs seeded on OSIS scaffold could be used as a new approach in regenerative medicine as hybrid or hydrogel application.  相似文献   
19.
Rational embellishment of self-assembling two-dimensional (2D) proteins make it possible to build 3D nanomaterials with novel catalytic, optoelectronic and mechanical properties. However, introducing multiple sites of embellishment into 2D protein arrays without affecting the self-assembly is challenging, limiting the ability to program in additional functionality and new 3D configurations. Here we introduce two orthogonal covalent linkages at multiple sites in a 2D crystalline-forming protein without affecting its self-assembly. We first engineered the surface-layer protein SbsB from Geobacillus stearothermophilus pV72/p2 to display isopeptide bond-forming protein conjugation pairs, SpyTag or SnoopTag, at four positions spaced 5.7-10.5 nm apart laterally and 3 nm axially. The C-terminal and two newly-identified locations within SbsB monomer accommodated the short SpyTag or SnoopTag peptide tags without affecting the 2D lattice structure. Introducing tags at distinct locations enabled orthogonal and covalent binding of SpyCatcher- or SnoopCatcher-protein fusions to micron-sized 2D nanosheets. By introducing different types of bifunctional cross-linkers, the dual-functionalized nanosheets were programmed to self-assemble into different 3D stacks, all of which retain their nanoscale order. Thus, our work creates a modular protein platform that is easy to program to create dual-functionalized 2D and lamellar 3D nanomaterials with new catalytic, optoelectronic, and mechanical properties.  相似文献   
20.
The corpus callosum is the principal cerebral commissure connecting the right and left hemispheres. The development of the corpus callosum is under tight genetic control, as demonstrated by abnormalities in its development in more than 1,000 genetic syndromes. We recruited more than 25 families in which members affected with corpus callosum hypoplasia (CCH) lacked syndromic features and had consanguineous parents, suggesting recessive causes. Exome sequence analysis identified C12orf57 mutations at the initiator methionine codon in four different families. C12orf57 is ubiquitously expressed and encodes a poorly annotated 126 amino acid protein of unknown function. This protein is without significant paralogs but has been tightly conserved across evolution. Our data suggest that this conserved gene is required for development of the human corpus callosum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号