首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214篇
  免费   19篇
  233篇
  2022年   2篇
  2021年   4篇
  2019年   1篇
  2018年   1篇
  2017年   5篇
  2016年   3篇
  2015年   12篇
  2014年   15篇
  2013年   18篇
  2012年   18篇
  2011年   8篇
  2010年   8篇
  2009年   13篇
  2008年   14篇
  2007年   9篇
  2006年   12篇
  2005年   9篇
  2004年   5篇
  2003年   7篇
  2002年   2篇
  2001年   11篇
  2000年   9篇
  1999年   6篇
  1998年   11篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1976年   2篇
  1971年   1篇
  1967年   1篇
排序方式: 共有233条查询结果,搜索用时 0 毫秒
131.
A survey was done to find microorganisms useful for assaying sterigmatocystin; T-2 toxin and zearalenone.Staphylococcus aureus was found to be sensitive to T-2 toxin and zearalenone;Bacillus cereus was found to be sensitive to T-2 toxin only; andEscherichia coli was sensitive to sterigmatocystin. The response of the organisms to sterigmatocystin; T-2 toxin and zearalenone was found to be linear between 4 and 100 μg with sterigmatocystin toE. coli; between 2 and 25 μg with T-2 toxin toStaph, aureus andB. cereus; and between 4 and 100 μg with zearalenone toStaph, aureus. The lower limits of sensitivity of the test were 2 μg T-2 toxin and zearalenone, and 4 μg sterigmatocystin. The assay is rapid (15–17 hrs); simple and inexpensive; and can be used to verify the toxicity of samples and to confirm thin layer chromatographic results.  相似文献   
132.
The UL130 gene is one of the major determinants of endothelial cell (EC) tropism of human cytomegalovirus (HCMV). In order to define functionally important peptides within this protein, we have performed a charge-cluster-to-alanine (CCTA) mutational scanning of UL130 in the genetic background of a bacterial artificial chromosome-cloned endotheliotropic HCMV strain. A total of 10 charge clusters were defined, and in each of them two or three charged amino acids were replaced with alanines. While the six N-terminal clusters were phenotypically irrelevant, mutation of the four C-terminal clusters each caused a reduction of EC tropism. The importance of this protein domain was further emphasized by the fact that the C-terminal pentapeptide PNLIV was essential for infection of ECs, and the cell tropism could not be rescued by a scrambled version of this sequence. We conclude that the C terminus of the UL130 protein serves an important function for infection of ECs by HCMV. This makes UL130 a promising molecular target for antiviral strategies, e.g., the development of antiviral peptides.Human cytomegalovirus (HCMV) is a widespread betaherpesvirus that causes lifelong persistent infections with occasional reactivations. While HCMV infection is usually clinically unapparent in the immunocompetent host, it can cause severe disseminated infections under conditions of immunosuppression, with manifestations in the lung, retina, and gastrointestinal tract, among others (12). Various cell types support viral replication, including epithelial cells and endothelial cells (ECs), smooth muscle cells, fibroblasts, and cells of hematopoietic origin (13, 14, 18, 19, 25, 26, 37). Among these target cells, endothelial cells are assumed to contribute particularly to hematogenous dissemination of HCMV (24).While recent clinical HCMV isolates are characterized by this broad cell tropism, the target cell range becomes restricted during long-term propagation on fibroblasts (28, 33). The underlying mechanism for this cell culture adaptation is a modulation within the viral genes UL128, UL130, and UL131A (8, 11). These three genes have been shown to be essential for infection of granulocytes, dendritic cells, epithelial cells, and endothelial cells but are dispensable for infection of fibroblasts (1, 9, 11, 34, 35). The encoded proteins pUL128, pUL130, and pUL131A were reported to form a complex with the viral glycoproteins gH and gL that is distinct from the glycoprotein complex gCIII (gH/gL/gO) (35). Whereas poorly endotheliotropic HCMV strains bear just the gH/gL/gO complex in their envelopes, highly endotheliotropic strains bear both gCIII variants: gH/gL/gO and gH/gL/pUL128-131A. Deletion of any of the three genes UL128-131A results in loss of EC tropism (11), most likely because only a complete complex of gH/gL and pUL128, pUL130, and pUL131A can efficiently function in endocytic entry in ECs (21). However, functional sites within the proteins (e.g., mediating binding to the viral complex partners or interaction with a putative cellular receptor) have not yet been identified. One approach to search for candidate protein-protein interaction sites is charge-cluster-to-alanine (CCTA) mutagenesis. This method is based on the assumption that clusters of charged amino acids tend to be exposed in the tertiary structure of a protein and are thus likely to be sites of interaction with other proteins. Replacement of these charged amino acids by uncharged alanines should then target protein-protein interaction sites without destroying the protein backbone (5, 7). Applying this method to HCMV pUL128, we were able to identify a central core region within pUL128 essential for EC infection as well as contributing sites in the N-terminal half and the C terminus of the protein (22). We now aimed to extend the study to the scanning of UL130 by markerless mutagenesis in the context of a highly endotheliotropic HCMV BACmid, TB40-BAC4. The resulting mutant viruses were then characterized with regard to their ability to infect ECs to identify the relevant parts of the protein.With regard to the role of UL130 in EC infection by endocytosis, the C-terminal part of pUL130 was of special interest. A frameshift mutation that changes the last 11 amino acids (aa) of pUL130 is the most prominent difference between the poorly endotheliotropic HCMV strain Towne and the highly endotheliotropic strain HCMV-TB40-BAC4 in this region (8, 11, 27). Rhee and Davis have described a cell-penetrating pentapeptide (CPP) motif (PFVYLI) mediating internalization by endocytosis, which is clathrin and caveolin independent but may involve lipid rafts (17). Not only do the last five amino acids of pUL130 (PNLIV) bear a striking similarity to this motif, but also the entry of HCMV into ECs has been reported to occur by an endocytic pathway (20, 23). Thus, we hypothesized that the pentapeptide motif PNLIV in pUL130 might be involved in mediating endocytic uptake of HCMV in ECs, and if so, deletion of this motif should result in a nonendotheliotropic virus. A number of CPPs that are thought to be taken up by endocytosis have now been described, including VPMLK, PMLKE, VPTLK, KLPVM, and others (32). These CPPs all bear some similarity, but the exact amino acid sequence seems to be irrelevant. We thus hypothesized for UL130 that a scrambled mutant (PNLIV changed to PINVL) should still be able to mediate endocytosis of HCMV in ECs. To test these assumptions we generated a series of mutant viruses where the PNLIV motif was either deleted, scrambled (PNLIV changed to PINVL), or exchanged against a known CPP (PFVYLI [17]) and characterized them with regard to EC infectivity.  相似文献   
133.
The aim of the present study is to assess the possible protective effects of thymol and carvacrol against cisplatin (CP)‐induced nephrotoxicity. A single dose of CP {6 mg/kg, intraperitoneally (i.p.)} injected to male rats revealed significant increases in serum urea, creatinine, and tumor necrosis factor alpha levels. It also increased kidney contents of malondialdehyde and caspase‐3 activity with significant reduction in serum albumin, kidney content of reduced glutathione as well as catalase, and superoxide dismutase activity as compared to that of the control group. In contrast, administration of thymol {20 mg/kg, orally (p.o.)} and/or carvacrol (15 mg/kg, p.o.) for 14 days before CP injection and for 7 days after CP administration restored the kidney function and examined oxidative stress parameters. In conclusion, thymol was more effective nephroprotective than carvacrol. Moreover, a combination of thymol and carvacrol had a synergistic nephroprotective effect that might be attributed to antioxidant, anti‐inflammatory, and antiapoptotic activities.  相似文献   
134.

Background

Although the endurance shuttle walk test (ESWT) has proven to be responsive to change in exercise capacity after pulmonary rehabilitation (PR) for COPD, the minimally important difference (MID) has not yet been established. We aimed to establish the MID of the ESWT in patients with severe COPD and chronic hypercapnic respiratory failure following PR.

Methods

Data were derived from a randomized controlled trial, investigating the value of noninvasive positive pressure ventilation added to PR. Fifty-five patients with stable COPD, GOLD stage IV, with chronic respiratory failure were included (mean (SD) FEV1 31.1 (12.0) % pred, age 62 (9) y). MID estimates of the ESWT in seconds, percentage and meters change were calculated with anchor based and distribution based methods. Six minute walking distance (6MWD), peak work rate on bicycle ergometry (Wpeak) and Chronic Respiratory Questionnaire (CRQ) were used as anchors and Cohen’s effect size was used as distribution based method.

Results

The estimated MID of the ESWT with the different anchors ranged from 186–199 s, 76–82% and 154–164 m. Using the distribution based method the MID was 144 s, 61% and 137 m.

Conclusions

Estimates of the MID for the ESWT after PR showed only small differences using different anchors in patients with COPD and chronic respiratory failure. Therefore we recommend using a range of 186–199 s, 76–82% or 154–164 m as MID of the ESWT in COPD patients with chronic respiratory failure. Further research in larger populations should elucidate whether this cut-off value is also valid in other COPD populations and with other interventions.

Trial registration

ClinicalTrials.Gov (ID NCT00135538).

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0182-x) contains supplementary material, which is available to authorized users.  相似文献   
135.
Cyclic adenosine monophosphate (cAMP) is a master regulator of mitochondrial metabolism but its precise mechanism of action yet remains unclear. Here, we found that a dietary saturated fatty acid (FA), palmitate increased intracellular cAMP synthesis through the palmitoylation of soluble adenylyl cyclase in cardiomyocytes. cAMP further induced exchange protein directly activated by cyclic AMP 1 (Epac1) activation, which was upregulated in the myocardium of obese patients. Epac1 enhanced the activity of a key enzyme regulating mitochondrial FA uptake, carnitine palmitoyltransferase 1. Consistently, pharmacological or genetic Epac1 inhibition prevented lipid overload, increased FA oxidation (FAO), and protected against mitochondrial dysfunction in cardiomyocytes. In addition, analysis of Epac1 phosphoproteome led us to identify two key mitochondrial enzymes of the the β-oxidation cycle as targets of Epac1, the long-chain FA acyl-CoA dehydrogenase (ACADL) and the 3-ketoacyl-CoA thiolase (3-KAT). Epac1 formed molecular complexes with the Ca2+/calmodulin-dependent protein kinase II (CaMKII), which phosphorylated ACADL and 3-KAT at specific amino acid residues to decrease lipid oxidation. The Epac1-CaMKII axis also interacted with the α subunit of ATP synthase, thereby further impairing mitochondrial energetics. Altogether, these findings indicate that Epac1 disrupts the balance between mitochondrial FA uptake and oxidation leading to lipid accumulation and mitochondrial dysfunction, and ultimately cardiomyocyte death.Subject terms: Mechanisms of disease, Cardiomyopathies  相似文献   
136.

Background  

Evolutionary rates are not constant across the human genome but genes in close proximity have been shown to experience similar levels of divergence and selection. The higher-order organisation of chromosomes has often been invoked to explain such phenomena but previously there has been insufficient data on chromosome structure to investigate this rigorously. Using the results of a recent genome-wide analysis of open and closed human chromatin structures we have investigated the global association between divergence, selection and chromatin structure for the first time.  相似文献   
137.
A set of eleven pig breeds originating from six European countries, and including a small sample of wild pigs, was chosen for this study of genetic diversity. Diversity was evaluated on the basis of 18 microsatellite markers typed over a total of 483 DNA samples collected. Average breed heterozygosity varied from 0.35 to 0.60. Genotypic frequencies generally agreed with Hardy-Weinberg expectations, apart from the German Landrace and Schwäbisch-Hällisches breeds, which showed significantly reduced heterozygosity. Breed differentiation was significant as shown by the high among-breed fixation index (overall FST = 0.27), and confirmed by the clustering based on the genetic distances between individuals, which grouped essentially all individuals in 11 clusters corresponding to the 11 breeds. The genetic distances between breeds were first used to construct phylogenetic trees. The trees indicated that a genetic drift model might explain the divergence of the two German breeds, but no reliable phylogeny could be inferred among the remaining breeds. The same distances were also used to measure the global diversity of the set of breeds considered, and to evaluate the marginal loss of diversity attached to each breed. In that respect, the French Basque breed appeared to be the most "unique" in the set considered. This study, which remains to be extended to a larger set of European breeds, indicates that using genetic distances between breeds of farm animals in a classical taxonomic approach may not give clear resolution, but points to their usefulness in a prospective evaluation of diversity.  相似文献   
138.

Background

Orthology is a central tenet of comparative genomics and ortholog identification is instrumental to protein function prediction. Major advances have been made to determine orthology relations among a set of homologous proteins. However, they depend on the comparison of individual sequences and do not take into account divergent orthologs.

Results

We have developed an iterative orthology prediction method, Ortho-Profile, that uses reciprocal best hits at the level of sequence profiles to infer orthology. It increases ortholog detection by 20% compared to sequence-to-sequence comparisons. Ortho-Profile predicts 598 human orthologs of mitochondrial proteins from Saccharomyces cerevisiae and Schizosaccharomyces pombe with 94% accuracy. Of these, 181 were not known to localize to mitochondria in mammals. Among the predictions of the Ortho-Profile method are 11 human cytochrome c oxidase (COX) assembly proteins that are implicated in mitochondrial function and disease. Their co-expression patterns, experimentally verified subcellular localization, and co-purification with human COX-associated proteins support these predictions. For the human gene C12orf62, the ortholog of S. cerevisiae COX14, we specifically confirm its role in negative regulation of the translation of cytochrome c oxidase.

Conclusions

Divergent homologs can often only be detected by comparing sequence profiles and profile-based hidden Markov models. The Ortho-Profile method takes advantage of these techniques in the quest for orthologs.  相似文献   
139.

Background  

Heterologous prime-boost immunization protocols using different gene expression systems have proven to be successful tools in protecting against various diseases in experimental animal models. The main reason for using this approach is to exploit the ability of expression cassettes to prime or boost the immune system in different ways during vaccination procedures. The purpose of the project was to study the ability of recombinant vaccinia virus (VV) and bacterial plasmid, both carrying the NS1 gene from tick-borne encephalitis (TBE) virus under the control of different promoters, to protect mice against lethal challenge using a heterologous prime-boost vaccination protocol.  相似文献   
140.
Structural genes of the mouse major urinary protein are on chromosome 4   总被引:10,自引:0,他引:10  
The major urinary proteins (MUPs) of mouse are a family of at least three major proteins which are synthesized in the liver of all strains of mice. The relative levels of synthesis of these proteins with respect to each other in the presence of testosterone is regulated by the Mup-a locus located on chromosome 4. In an effort to determine the mechanism of this regulation in molecular terms, a cDNA clone containing most of the coding region of a MUP protein has been isolated and identified by partial DNA sequence analysis. Using a combination of hybridization analysis and somatic cell genetics, the structural gene family has been unambiguously mapped to mouse chromosome 4. These data suggest that Mup-a regulation operates in a cis fashion and that models proposing trans regulation of MUP protein synthesis are unlikely.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号