首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220篇
  免费   17篇
  2023年   2篇
  2022年   6篇
  2021年   7篇
  2020年   2篇
  2019年   4篇
  2018年   6篇
  2017年   14篇
  2016年   10篇
  2015年   18篇
  2014年   20篇
  2013年   20篇
  2012年   33篇
  2011年   35篇
  2010年   4篇
  2009年   10篇
  2008年   13篇
  2007年   10篇
  2006年   8篇
  2005年   4篇
  2004年   7篇
  2003年   2篇
  2002年   1篇
  1994年   1篇
排序方式: 共有237条查询结果,搜索用时 291 毫秒
201.
In the present study, we developed a cell-based protocol for the identification of drugs able to induce steatosis. The assay measures multiple markers of toxicity in a 96-well plate format using high-content screening (HCS) technology. After treating HepG2 cells with increasing concentrations of the tested compounds, toxicity parameters were analyzed using fluorescent probes: BODIPY493/503 (lipid content), 2',7'-dihydrodichlorofluorescein diacetate (reactive oxygen species [ROS] generation), tetramethyl rhodamine methyl ester (mitochondrial membrane potential), propidium iodide (cell viability), and Hoechst 33342 (nuclei staining). A total of 16 drugs previously reported to induce liver steatosis through different mechanisms (positive controls) and six nonsteatotic compounds (negative controls) were included in the study. All the steatosis-positive compounds significantly increased BODIPY493/503 fluorescence in HepG2 cells, whereas none of the negative controls induced lipid accumulation. In addition to effects on fat levels, increased ROS generation was produced by certain compounds, which could be indicative of increased risk of liver damage. Our results suggest that this in vitro approach is a simple, rapid, and sensitive screening tool for steatosis-inducing drugs. This conclusion should be confirmed by testing a larger number of steatosis-positive and -negative inducers.  相似文献   
202.
203.
The embryonic gonad is the only organ that takes two mutually exclusive differentiating pathways and hence gives rise to two different adult organs: testes or ovaries. The recent application of genomic tools including microarrays, next-generation sequencing approaches, and epigenetics can significantly contribute to decipher the molecular mechanisms involved in the processes of sex determination and sex differentiation. However, in fish, these studies are complicated by the fact that these processes depend, perhaps to a larger extent when compared to other vertebrates, on the interplay of genetic and environmental influences. Here, we review the advances made so far, taking into account different experimental approaches, and illustrate some technical complications deriving from the fact that as development progresses it becomes more and more difficult to distinguish whether changes in gene expression or DNA methylation patterns are the cause or the consequence of such developmental events. Finally, we suggest some avenues for further research in both model fish species and fish species facing specific problems within an aquaculture context.  相似文献   
204.
The yeast Saccharomyces cerevisiae has been widely used for the implementation of DNA chip technologies. For this reason and due to the extensive use of this organism for basic and applied studies, yeast DNA chips are being used by many laboratories for expression or genomic analyses. While membrane arrays (macroarrays) offer several advantages, for many laboratories they are not affordable. Here we report that a cluster of four Spanish molecular-biology yeast laboratories, with relatively small budgets, have developed a complete set of probes for the genome of S. cerevisiae. These have been used to produce a new type of macroarray on a nylon surface. The macroarrays have been evaluated and protocols for their use have been optimized.  相似文献   
205.
206.
Understanding distribution patterns and multitrophic interactions is critical for managing bat‐ and bird‐mediated ecosystem services such as the suppression of pest and non‐pest arthropods. Despite the ecological and economic importance of bats and birds in tropical forests, agroforestry systems, and agricultural systems mixed with natural forest, a systematic review of their impact is still missing. A growing number of bird and bat exclosure experiments has improved our knowledge allowing new conclusions regarding their roles in food webs and associated ecosystem services. Here, we review the distribution patterns of insectivorous birds and bats, their local and landscape drivers, and their effects on trophic cascades in tropical ecosystems. We report that for birds but not bats community composition and relative importance of functional groups changes conspicuously from forests to habitats including both agricultural areas and forests, here termed ‘forest‐agri’ habitats, with reduced representation of insectivores in the latter. In contrast to previous theory regarding trophic cascade strength, we find that birds and bats reduce the density and biomass of arthropods in the tropics with effect sizes similar to those in temperate and boreal communities. The relative importance of birds versus bats in regulating pest abundances varies with season, geography and management. Birds and bats may even suppress tropical arthropod outbreaks, although positive effects on plant growth are not always reported. As both bats and birds are major agents of pest suppression, a better understanding of the local and landscape factors driving the variability of their impact is needed.  相似文献   
207.
The cytoplasmic sides of transmembrane helices 3 and 6 of G-protein-coupled receptors are connected by a network of ionic interactions that play an important role in maintaining its inactive conformation. To investigate the role of such a network in rhodopsin structure and function, we have constructed single mutants at position 134 in helix 3 and at positions 247 and 251 in helix 6, as well as combinations of these to obtain double mutants involving the two helices. These mutants have been expressed in COS-1 cells, immunopurified using the rho-1D4 antibody, and studied by UV-visible spectrophotometry. Most of the single mutations did not affect chromophore formation, but double mutants, especially those involving the T251K mutant, resulted in low yield of protein and impaired 11-cis-retinal binding. Single mutants E134Q, E247Q, and E247A showed the ability to activate transducin in the dark, and E134Q and E247A enhanced activation upon illumination, with regard to wild-type rhodopsin. Mutations E247A and T251A (in E134Q/E247A and E134Q/T251A double mutants) resulted in enhanced activation compared with the single E134Q mutant in the dark. A role for Thr(251) in this network is proposed for the first time in rhodopsin. As a result of these mutations, alterations in the hydrogen bond interactions between the amino acid side chains at the cytoplasmic region of transmembrane helices 3 and 6 have been observed using molecular dynamics simulations. Our combined experimental and modeling results provide new insights into the details of the structural determinants of the conformational change ensuing photoactivation of rhodopsin.  相似文献   
208.
209.
210.
When exposed to enteric pathogens intestinal epithelial cells produce several cytokines and other proinflammatory mediators. To date there is no evidence that the ether-lipid platelet-activating factor (PAF) is one of these mediators. Our results revealed a significant increase in PAF production by human colonic tissue 4 h after infection by enterohemorrhagic Escherichia coli (EHEC) or Salmonella enteritidis. PAF is produced in the gut by cells of the immune system in response to bacterial infection. To determine whether the epithelial cells of colonic mucosa might also modulate PAF levels, we carried out PAF quantification and analysis of the enzymes involved in PAF synthesis in 5-day-old (undifferentiated) or 28-day-old (differentiated) Caco-2 cell cultures. Infection of undifferentiated Caco-2 cells with either bacterium had no effect on PAF levels, whereas in differentiated cells, infection by S. enteritidis increased PAF levels. Following infection by S. enteritidis, there were no changes in the activity of dithiothreitol-insensitive choline phosphotransferase. However, the enzymes of the remodeling pathway cytosolic phospholipase A(2), which catalyzes the formation of the PAF precursor lysoPAF, and lysoPAF acetyltransferase, are activated in the infected epithelial cells. This response is Ca(2+)-dependent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号