首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5510篇
  免费   536篇
  国内免费   117篇
  6163篇
  2023年   45篇
  2022年   94篇
  2021年   171篇
  2020年   101篇
  2019年   119篇
  2018年   130篇
  2017年   91篇
  2016年   161篇
  2015年   315篇
  2014年   333篇
  2013年   401篇
  2012年   484篇
  2011年   431篇
  2010年   249篇
  2009年   206篇
  2008年   307篇
  2007年   247篇
  2006年   243篇
  2005年   227篇
  2004年   199篇
  2003年   171篇
  2002年   167篇
  2001年   107篇
  2000年   121篇
  1999年   108篇
  1998年   63篇
  1997年   49篇
  1996年   35篇
  1995年   35篇
  1994年   43篇
  1993年   41篇
  1992年   70篇
  1991年   56篇
  1990年   45篇
  1989年   55篇
  1988年   50篇
  1987年   35篇
  1986年   39篇
  1985年   30篇
  1984年   50篇
  1983年   27篇
  1982年   27篇
  1981年   22篇
  1980年   15篇
  1979年   27篇
  1978年   24篇
  1977年   20篇
  1975年   16篇
  1974年   9篇
  1971年   11篇
排序方式: 共有6163条查询结果,搜索用时 18 毫秒
981.
Agrobacterium tumefaciens is the causal agent of crown gall disease in a wide range of plants via a unique interkingdom DNA transfer from bacterial cells into the plant genome. Agrobacterium tumefaciens is capable of transferring its T‐DNA into different plant parts at different developmental stages for transient and stable transformation. However, the plant genes and mechanisms involved in these transformation processes are not well understood. We used Arabidopsis thaliana Col‐0 seedlings to reveal the gene expression profiles at early time points during Agrobacterium infection. Common and differentially expressed genes were found in shoots and roots. A gene ontology analysis showed that the glucosinolate (GS) biosynthesis pathway was an enriched common response. Strikingly, several genes involved in indole glucosinolate (iGS) modification and the camalexin biosynthesis pathway were up‐regulated, whereas genes in aliphatic glucosinolate (aGS) biosynthesis were generally down‐regulated, on Agrobacterium infection. Thus, we evaluated the impacts of GSs and camalexin during different stages of Agrobacterium‐mediated transformation combining Arabidopsis mutant studies, metabolite profiling and exogenous applications of various GS hydrolysis products or camalexin. The results suggest that the iGS hydrolysis pathway plays an inhibitory role on transformation efficiency in Arabidopsis seedlings at the early infection stage. Later in the Agrobacterium infection process, the accumulation of camalexin is a key factor inhibiting tumour development on Arabidopsis inflorescence stalks. In conclusion, this study reveals the differential roles of GSs and camalexin at different stages of Agrobacterium‐mediated transformation and provides new insights into crown gall disease control and improvement of plant transformation.  相似文献   
982.
Many mammal skulls contain air spaces inside the bones surrounding the nasal chamber including the frontal, maxilla, ethmoid, and sphenoid, all of which are called paranasal sinuses. Within the Carnivora, frontal sinuses are usually present, but vary widely in size and shape. The causes of this variation are unclear, although there are some functional associations, such as a correlation between expanded frontal sinuses and a durophagous diet in some species (e.g., hyenas) or between absent sinuses and semiaquatic lifestyle (e.g., pinnipeds). To better understand disparity in frontal sinus morphology within Carnivora, we quantified frontal sinus size in relationship to skull size and shape in 23 species within Arctoidea, a clade that is ecologically diverse including three independent invasions of aquatic habitats, by bears, otters, and pinnipeds, respectively. Our sampled species range in behavior from terrestrial (rarely or never forage in water), to semiterrestrial (forage in water and on land), to semiaquatic (forage only in water). Results show that sinuses are either lost or reduced in both semiterrestrial and semiaquatic species, and that sinus size is related to skull size and shape. Among terrestrial species, frontal sinus size was positively allometric overall, but several terrestrial species completely lacked sinuses, including two fossorial badgers, the kinkajou (a nocturnal, arboreal frugivore), and several species with small body size, indicating that factors other than aquatic habits, such as space limitations due to constraints on skull size and shape, can limit sinus size and presence. J. Morphol. 276:22–32, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   
983.
Glycan-bound nanoprobes have been demonstrated as suitable sensing probes for bacteria containing glycan binding sites. In this study, we demonstrated a facile approach for generating glycan-bound gold nanoclusters (AuNCs). The generated AuNCs were used as sensing probes for corresponding target bacteria. Mannose-capped AuNCs (AuNCs@Mann) were generated and used as the model sensors for target bacteria. A one-step synthesis approach was employed to generate AuNCs@Mann. In this approach, an aqueous solution of tetrachloroauric acid and mannoside that functionized with a thiol group (Mann-SH) was stirred at room temperature for 48 h. The mannoside functions as reducing and capping agent. The size of the generated AuNCs@Mann is 1.95±0.27 nm, whereas the AuNCs with red photoluminescence have a maximum emission wavelength of ∼630 nm (λexcitation = 375 nm). The synthesis of the AuNCs@Mann was accelerated by microwave heating, which enabled the synthesis of the AuNCs@Mann to complete within 1 h. The generated AuNCs@Mann are capable of selectively binding to the urinary tract infection isolate Escherichia coli J96 containing the mannose binding protein FimH expressed on the type 1 pili. On the basis of the naked eye observation, the limit of detection of the sensing approach is as low as ∼2×106 cells/mL.  相似文献   
984.
Fused Toes (FTS) is a member of a small group of inactive variant E2 ubiquitin-conjugating enzyme domain-containing proteins of unknown function. Through proteomic analysis of FTS complexes purified from human embryonic kidney 293T cells, we identified a new multiprotein complex, the FHF complex, containing FTS, members of the microtubule-binding Hook family of coiled-coil proteins (Hook1, Hook2, and Hook3), and a previously uncharacterized 107-kDa protein, FTS and Hook Interacting Protein (FHIP). FTS associated with a conserved C-terminal motif in Hook proteins in the yeast two-hybrid system and in tissue culture cells, and Hook proteins were found to form homo- and heterodimers. The approximately 500-kDa FHF complex contained all three Hook proteins, and small interfering RNA depletion experiments suggest that Hook proteins can interact interchangeably within this complex. Hook proteins as well as FTS interact with members of both the class B and class C components of the homotypic vesicular protein sorting (HOPS) complex. Depletion of FTS by RNA interference affects both the trafficking of epidermal growth factor from early-to-late endosome/lysosomes and the efficiency by which overexpression of the HOPS component Vps18 promotes clustering of lysosomal-associated membrane protein 1-positive endosome/lysosomes. These data suggest that the FTS/Hook/FHIP complex functions to promote vesicle trafficking and/or fusion via the HOPS complex.  相似文献   
985.
In this study, we performed several DFT, MP2, and BD(T) calculations on the 1,2-H shift reactions of two diaminocarbenes (1, 2) and a diamidocarbene (3) using the Gaussian 09 program. In Gaussian 09, the BD(T) method keyword requests a Brueckner doubles calculation including a perturbative triples contribution. Although N-heterocyclic carbenes (NHC) are typically known for their exceptional σ-donor abilities, recent studies have indicated that π-interactions also play a role in the bonding between NHCs and transition metals or BX3 (X = H, OH, NH2, CH3, CN, NC, F, Cl, and Br) (Nemcsok et al. Organomet 23:3640–3646, 2004, Esrafili. J Mol Model 18:2003–2011, 2012). In order to study the importance of π-interactions between carbenes and transition metals, Hobbs and co-workers (Hobbs et al. New J Chem 34:1295–1308, 2010) focused on the synthesis of NHCs with reduced-energy lowest unoccupied molecular orbitals. By introducing an oxalamide moiety into the heterocyclic backbone, they found the resulting carbene possessed higher electrophilicity than usual NHCs. According to our results, the N,N'-diamidocarbene should be more stable than the diaminocarbenes with respect to the 1,2-H shift reaction.
In this study, we performed several DFT, MP2, and BD(T) calculations on the 1,2-H shift reactions of two diaminocarbenes (1, 2) and a diamidocarbene (3). According to our results, the N,N'-diamidocarbene should be more stable than the diaminocarbenes with respect to the 1,2-H shift reaction. Due to the synthetic utility of N,N′-diamidocarbenes, we believe that our results could provide information to better rationalize their reactivity.  相似文献   
986.

Background

In vivo phosphorylation of sphingosine analogs with their ensuing binding and activation of their cell-surface sphingosine-1-phosphate receptors is regarded as the main immunomodulatory mechanism of this new class of drugs. Prophylactic treatment with sphingosine analogs interferes with experimental asthma by impeding the migration of dendritic cells to draining lymph nodes. However, whether these drugs can also alleviate allergic airway inflammation after its onset remains to be determined. Herein, we investigated to which extent and by which mechanisms the sphingosine analog AAL-R interferes with key features of asthma in a murine model during ongoing allergic inflammation induced by Dermatophagoides pteronyssinus.

Methods

BALB/c mice were exposed to either D. pteronyssinus or saline, intranasally, once-daily for 10 consecutive days. Mice were treated intratracheally with either AAL-R, its pre-phosphorylated form AFD-R, or the vehicle before every allergen challenge over the last four days, i.e. after the onset of allergic airway inflammation. On day 11, airway responsiveness to methacholine was measured; inflammatory cells and cytokines were quantified in the airways; and the numbers and/or viability of T cells, B cells and dendritic cells were assessed in the lungs and draining lymph nodes.

Results

AAL-R decreased airway hyperresponsiveness induced by D. pteronyssinus by nearly 70%. This was associated with a strong reduction of IL-5 and IL-13 levels in the airways and with a decreased eosinophilic response. Notably, the lung CD4+ T cells were almost entirely eliminated by AAL-R, which concurred with enhanced apoptosis/necrosis in that cell population. This inhibition occurred in the absence of dendritic cell number modulation in draining lymph nodes. On the other hand, the pre-phosphorylated form AFD-R, which preferentially acts on cell-surface sphingosine-1-phosphate receptors, was relatively impotent at enhancing cell death, which led to a less efficient control of T cell and eosinophil responses in the lungs.

Conclusion

Airway delivery of the non-phosphorylated sphingosine analog, but not its pre-phosphorylated counterpart, is highly efficient at controlling the local T cell response after the onset of allergic airway inflammation. The mechanism appears to involve local induction of lymphocyte apoptosis/necrosis, while mildly affecting dendritic cell and T cell accumulation in draining lymph nodes.  相似文献   
987.
Hepatocellular carcinoma (HCC) is one of the major malignancies worldwide and is associated with poor prognosis due to the high incidences of metastasis and tumor recurrence. Our previous study showed that overexpression of p21-activated protein kinase 1 (PAK1) is frequently observed in HCC and is associated with a more aggressive tumor behavior, suggesting that PAK1 is a potential therapeutic target in HCC. In the current study, an allosteric small molecule PAK1 inhibitor, IPA-3, was evaluated for the potential in suppressing hepatocarcinogenesis. Consistent with other reports, inhibition of PAK1 activity was observed in several human HCC cell lines treated with various dosages of IPA-3. Using cell proliferation, colony formation and BrdU incorporation assays, we demonstrated that IPA-3 treatment significantly inhibited the growth of HCC cells. The mechanisms through which IPA-3 treatment suppresses HCC cell growth are enhancement of apoptosis and blockage of activation of NF-κB. Furthermore, our data suggested that IPA-3 not only inhibits the HCC cell growth, but also suppresses the metastatic potential of HCC cells. Nude mouse xenograft assay demonstrated that IPA-3 treatment significantly reduced the tumor growth rate and decreased tumor volume, indicating that IPA-3 can suppress the in vivo tumor growth of HCC cells. Taken together, our demonstration of the potential preclinical efficacy of IPA-3 in HCC provides the rationale for cancer therapy.  相似文献   
988.
989.
Vo NV  Tuler JR  Lai MM 《Biochemistry》2004,43(32):10579-10591
The nonstructural protein NS5B of hepatitis C virus (HCV) is an RNA-dependent RNA polymerase (RdRp), which plays a central role in viral replication. Most of the reported studies on HCV polymerase in vitro have used a truncated form of the enzyme lacking the C-terminal 21 amino acids (DeltaC(21)-NS5B). In this study, we compared the enzymatic properties of the full-length NS5B (FL-NS5B) and this truncated form. Removal of the C(21) domain enhanced the enzyme stability. Both enzymes are capable of performing de novo and primer-dependent RNA syntheses, but each possesses a unique set of biochemical requirements for optimal RdRp activity. Whereas RNA synthesis by FL-NS5B remained relatively constant at 12-100 mM KCl, synthesis by DeltaC(21)-NS5B rapidly decreased at KCl concentrations greater than 12 mM. The different salt requirement for overall RNA synthesis by these two polymerases can in part be explained by the effect of monovalent ion concentration at the step of template binding, where binding by DeltaC(21)-NS5B but not FL-NS5B decreased proportionally as the KCl concentration increased from 25 to 200 mM. Thus, the C(21) domain appears to contribute to NS5B-RNA template binding, probably through the hydrophobic stacking interaction between its aromatic amino acids and the nucleotide bases of the RNA. This interpretation was supported by the observation that the C(21) polypeptide by itself could also bind to RNA to form binary complexes that were resistant to changes in the KCl concentration. Though both enzymes exhibited similar K(s) values for each of the four NTPs (1-5 microM), DeltaC(21)-NS5B generally required lower NTP concentrations than FL-NS5B for optimal synthesis. Interestingly, DeltaC(21)-NS5B became severely inhibited at elevated NTP concentrations, which most likely is due to competitive binding of the noncomplementary nucleotide to the polymerase catalytic center. Finally, the terminal transferase activity of DeltaC(21)-NS5B was found to be distinct from that of FL-NS5B on several different RNA templates. Together, these findings indicated that the HCV NS5B C(21) domain, in addition to being a membrane anchor, functions in template binding, NTP substrate selection, and modulation of terminal transferase activity.  相似文献   
990.

Introduction  

SPARC is a matricellular protein, which, along with other extracellular matrix components including collagens, is commonly over-expressed in fibrotic diseases. The purpose of this study was to examine whether inhibition of SPARC can regulate collagen expression in vitro and in vivo, and subsequently attenuate fibrotic stimulation by bleomycin in mouse skin and lungs.  相似文献   
[首页] « 上一页 [94] [95] [96] [97] [98] 99 [100] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号