首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1072篇
  免费   52篇
  2023年   8篇
  2022年   13篇
  2021年   16篇
  2020年   8篇
  2019年   16篇
  2018年   21篇
  2017年   15篇
  2016年   25篇
  2015年   52篇
  2014年   71篇
  2013年   61篇
  2012年   84篇
  2011年   81篇
  2010年   49篇
  2009年   35篇
  2008年   58篇
  2007年   55篇
  2006年   53篇
  2005年   34篇
  2004年   37篇
  2003年   30篇
  2002年   32篇
  2001年   18篇
  2000年   23篇
  1999年   28篇
  1998年   10篇
  1997年   9篇
  1996年   7篇
  1995年   9篇
  1994年   7篇
  1993年   8篇
  1992年   11篇
  1991年   10篇
  1990年   15篇
  1989年   8篇
  1988年   13篇
  1987年   9篇
  1986年   5篇
  1985年   7篇
  1983年   10篇
  1981年   7篇
  1980年   5篇
  1979年   4篇
  1978年   4篇
  1977年   8篇
  1974年   3篇
  1972年   3篇
  1971年   5篇
  1970年   3篇
  1966年   3篇
排序方式: 共有1124条查询结果,搜索用时 17 毫秒
971.
Abstract. In contrast to marine bryozoans, the lophophore structure and the ciliary filter‐feeding mechanism in freshwater bryozoans have so far been only poorly described. Specimens of the phylactolaemate bryozoan Plumatella repens were studied to clarify the tentacular ciliary structures and the particle capture mechanism. Scanning electron microscopy revealed that the tentacles of the lophophore have a frontal band of densely packed cilia, and on each side a zigzag row of laterofrontal cilia and a band of lateral cilia. Phalloidin‐linked fluorescent dye showed no sign of muscular tissue within the tentacles. Video microscopy was used to describe basic characteristics of particle capture. Suspended particles in the incoming water flow, set up by the lateral ‘pump’ cilia on the tentacles, approach the tentacles with a velocity of 1–2 mm s‐1. Near the tentacles, the particles are stopped by the stiff sensory laterofrontal cilia acting as a mechanical sieve, as previously seen in marine bryozoans. The particle capture mechanism suggested is based on the assumed ability of the sensory stiff laterofrontal cilia to be triggered by the deflection caused by the drag force of the through‐flowing water on a captured food particle. Thus, when a particle is stopped by the laterofrontal cilia, the otherwise stiff cilia are presumably triggered to make an inward flick which brings the restrained particle back into the downward directed main current, possibly to be captured again further down in the lophophore before being carried to the mouth via the food groove. No tentacle flicks and no transport of captured particles on the frontal side of the tentacles were observed. The velocity of the metachronal wave of the water‐pumping lateral cilia was measured to be ~0.2 mm s‐1, the wavelength was ~7 μm, and hence the ciliary beat frequency estimated to be ~30 Hz (~20 °C). The filter feeding process in P. repens reported here resembles the ciliary sieving process described for marine bryozoans in recent years, although no tentacle flicks were observed in P. repens. The phylogenetic position of the phylactolaemates is discussed in the light of these findings.  相似文献   
972.
P2X(4) and P2X(7) receptors are abundantly expressed in alveolar epithelial cells, and are thought to play a role in regulating fluid haemostasis. Here, we analyzed the expression and localization of the P2X(4)R, and characterized the interaction between Cav-1 and both P2X(4)R and P2X(7)R in the mouse alveolar epithelial cell line E10. Using the biotinylation assay, we found that only glycosylated P2X(4)R is exposed at the cell surface. Triton X-100 solubility experiments and sucrose gradient centrifugation revealed that P2X(4)R was partially localized in Cav-1 rich membrane fractions. Cholesterol depletion with Mbeta-CD displaced Cav-1 and P2X(4)R from the low-density to the high-density fractions. Suppression of Cav-1 protein expression using short hairpin RNAs resulted in a large reduction in P2X(4)R levels. Double immunofluorescence showed that P2X(4)R and Cav-1 partially colocalize in vitro. Using the GST pull-down assay, we showed that Cav-1 interacts in vitro with both P2X(4)R and P2X(7)R. Co-immunoprecipitation experiments confirmed the interaction between P2X(7)R and Cav-1. ATP stimulation increased the level of P2X(4)R in the lipid raft/caveolae fraction, whereas Cav-1 content remained constant. Our results support recent evidence that P2X receptors are present in both raft and non-raft compartments of the plasma membrane and thus exhibit variable ATP sensitivity.  相似文献   
973.
A reversed-phase high-performance liquid chromatographic–electrochemical assay was developed and validated for the quantification of olanzapine in human breast milk. The assay involved a solid-phase extraction (SPE) of olanzapine and its internal standard on a Bond Elut Certify LRC mixed-mode cartridge. After conditioning of the SPE cartridge, human milk (1 ml) was passed through the cartridge. The cartridge was washed with five separate washing steps to remove endogenous compounds, and the analytes were eluted with ethyl acetate–ammonium hydroxide (98:2, v/v) solution. The eluate was evaporated to dryness (gentle stream of nitrogen at 40°C), and the residue was dissolved in mobile phase. The extract was injected onto a YMC basic column (150 mm×4.6 mm I.D., 5 μm particle size) at a flow-rate of 1 ml/min. A mixture of 75 mM phosphate buffer, pH 7.0–acetonitrile–methanol (48:26:26, v/v/v) was used as the mobile phase. Standard curves with a lower limit of quantitation of 0.25 ng/ml of olanzapine were linear (r2≥0.9992) over a range of 0.25–100 ng/ml. Based on the analysis of quality control (QC) samples, the average inter-day accuracy (RE) was 99.0% with an average precision (CV) of 6.64% over the entire range. The stability of olanzapine in human milk was established after three freeze–thaw–heat cycles and storage at −70°C for 10 months. The validated method was used to measure olanzapine concentrations in human milk during a clinical trial.  相似文献   
974.
975.
976.
Genetically engineered mouse models have been generated to study the molecular basis of prostate cancer (PCa) development, progression, and metastasis. Selection of a prostate-specific promoter, such as the probasin (PB) and prostate specific antigen (PSA) promoters, is critical for generating sufficient levels of transgene expression to elicit a phenotypic response. To date, target genes have included growth factors, cell cycle regulators, pro- and anti-apoptotic proteins, steroid hormone and growth factor receptors, oncogenes, tumor suppressors, and homeobox genes. The experimental approaches used to generate these mouse models include overexpression of the transgene, knock-out/knock-in of transgene expression and conditional regulation of expression using Cre/lox technology. This review summarizes the promoters, which have been utilized to create genetically engineered mouse models for PCa. Furthermore, the effects of gene disruption on promoting low- and high-grade intraepithelial neoplasia (LGPIN and HGPIN, respectively), locally invasive carcinoma and metastatic lesions will be discussed. To date, the PB-Cre4 x PTENloxp/loxp model appears to be the only model that represents the entire continuum of prostate adenocarcinoma development, tumor progression, and metastasis, although models that develop prostatic neuroendocrine (NE) cancer can be generated by disrupting one genetic event. Indeed, analysis of bigenic mouse models indicates that two genetic events are generally required for progression from HGPIN to locally invasive adenocarcinoma and that two to five genetic events can promote metastasis to distant sites. Studying the effects of genetic perturbation on PCa biology will increase our understanding of the disease process and potentially provide targets for developing novel therapeutic approaches.  相似文献   
977.
Two alveolar epithelial cell lines R3/1 and L2 were screened by immunocytochemical and RT-PCR analysis of epithelial and mesenchymal/contractile marker proteins. R3/1 and L2 cells were tested for their sensitivity to bleomycin (BLM), an anticancer drug, which is proposed to induce changes in lung cell differentiation. Both epithelial cell lines exhibited a mixed phenotype consisting of epithelial (E-cadherin, aquaporin-5 and cytokeratin 8) and myofibroblast-like (vimentin, α-SMA and caveolin-3) properties suggesting that the cell lines are arrested in vitro at a certain developmental stage during epithelial–mesenchymal transition (EMT). BLM treatment of R3/1 cells resulted in a partial reversal of this process modifying the cells in an epithelial direction, e.g., upregulation of E-cadherin, aquaporin-5 and other lung epithelial antigens at the mRNA and protein level. L2 cells showed similar alterations following BLM exposure. Immunohistochemical investigation of lung tissue from two different animal models of BLM-induced fibrosis (mouse and rat), revealed no signs of EMT, e.g., myofibroblastic differentiation of alveolar epithelial cells in situ. Immunohistological analysis of tissue samples of the rat model showed a heterogeneous population of myofibroblasts (α-SMA+/caveolin-3+, α-SMA-/caveolin-3+, and α-SMA+/caveolin-3). These results suggest that BLM, on one hand, induces fibrosis and on the other hand possibly suppresses EMT during fibrogenesis.  相似文献   
978.
979.
Group B Streptococcus (GBS) cell walls potently activate phagocytes by a largely TLR2-independent mechanism. In contrast, the cell wall component lipoteichoic acid (LTA) from diverse Gram-positive bacterial species has been shown to engage TLR2. In this study we examined the role of LTA from GBS in phagocyte activation and the requirements for TLR-LTA interaction. Using cells from knockout mice and genetic complementation in epithelial cells we found that highly pure LTA from both GBS and Staphylococcus aureus interact with TLR2 and TLR6, but not TLR1, in contrast to previous reports. Furthermore, NF-kappaB activation by LTA required the integrity of two putative PI3K binding domains within TLR2 and was inhibited by wortmannin, indicating an essential role for PI3K in cellular activation by LTA. However, LTA from GBS proved to be a relatively weak stimulus of phagocytes containing approximately 20% of the activity observed with LTA from Staphylococcus aureus. Structural analysis by nuclear magnetic resonance spectrometry revealed important differences between LTA from GBS and S. aureus, specifically differences in glycosyl linkage, in the glycolipid anchor and a lack of N-acetylglucosamine substituents of the glycerophosphate backbone. Furthermore, GBS expressing LTA devoid of d-alanine residues, that are essential within immune activation by LTA, exhibited similar inflammatory potency as GBS with alanylated LTA. In conclusion, LTA from GBS is a TLR2/TLR6 ligand that might contribute to secreted GBS activity, but does not contribute significantly to GBS cell wall mediated macrophage activation.  相似文献   
980.
ClC-7 is a chloride channel of late endosomes and lysosomes. In osteoclasts, it may cooperate with H(+)-ATPases in acidifying the resorption lacuna. In mice and man, loss of ClC-7 or the H(+)-ATPase a3 subunit causes osteopetrosis, a disease characterized by defective bone resorption. We show that ClC-7 knockout mice additionally display neurodegeneration and severe lysosomal storage disease despite unchanged lysosomal pH in cultured neurons. Rescuing their bone phenotype by transgenic expression of ClC-7 in osteoclasts moderately increased their lifespan and revealed a further progression of the central nervous system pathology. Histological analysis demonstrated an accumulation of electron-dense material in neurons, autofluorescent structures, microglial activation and astrogliosis. Like in human neuronal ceroid lipofuscinosis, there was a strong accumulation of subunit c of the mitochondrial ATP synthase and increased amounts of lysosomal enzymes. Such alterations were minor or absent in ClC-3 knockout mice, despite a massive neurodegeneration. Osteopetrotic oc/oc mice, lacking a functional H(+)-ATPase a3 subunit, showed no comparable retinal or neuronal degeneration. There are important medical implications as defects in the H(+)-ATPase and ClC-7 can underlie human osteopetrosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号