首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   219篇
  免费   40篇
  国内免费   1篇
  2022年   2篇
  2021年   4篇
  2020年   6篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   15篇
  2014年   8篇
  2013年   16篇
  2012年   13篇
  2011年   22篇
  2010年   12篇
  2009年   8篇
  2008年   8篇
  2007年   13篇
  2006年   6篇
  2005年   5篇
  2004年   3篇
  2003年   1篇
  2002年   7篇
  2001年   7篇
  2000年   12篇
  1999年   10篇
  1998年   6篇
  1997年   2篇
  1996年   6篇
  1995年   6篇
  1994年   3篇
  1993年   1篇
  1992年   7篇
  1991年   4篇
  1990年   5篇
  1989年   2篇
  1987年   2篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1978年   1篇
  1976年   2篇
  1975年   1篇
  1974年   4篇
  1973年   3篇
  1972年   3篇
  1969年   3篇
  1965年   1篇
  1964年   1篇
  1963年   1篇
  1958年   1篇
排序方式: 共有260条查询结果,搜索用时 15 毫秒
31.
The recent release of sequences of several unexplored yeast species that cover an evolutionary range comparable to the entire phylum of chordates offers us a unique opportunity to investigate how genes involved in adaptation have been shaped by evolution. We have examined how three different sets of genes, all related to adaptative processes at the genomic level, have evolved in hemiascomycetes: (1) the mating-type genes that govern sexuality, (2) the silencing genes that are connected to regulation of mating-type cassettes and to telomere position effect, and (3) the gene families found repeated in subtelomeric regions.We report new combinations of mating-type genes and cassettes in hemiascomycetous species; we show that silencing proteins diverge rapidly. We have also found that in all species studied, subtelomeric gene families exist and are specific to each species.  相似文献   
32.
Among genes conserved from bacteria to mammals are those involved in replicating and repairing DNA. Following the complete sequencing of four hemiascomycetous yeast species during the course of the Genolevures 2 project, we have studied the conservation of 106 genes involved in replication, repair, and recombination in Candida glabrata, Kluyveromyces lactis, Debaryomyces hansenii, and Yarrowia lipolytica and compared them with their Saccharomyces cerevisiae orthologues. We found that proteins belonging to the replication fork and to the nucleotide excision repair pathway were-on the average-more conserved than proteins involved in the checkpoint response to DNA damage or in meiotic recombination. The meiotic recombination proteins Spo11p and Mre11p-Rad50p, involved in making meiotic double-strand breaks (DSBs), are conserved as is Mus81p, involved in resolving meiotic recombination intermediates. Interestingly, genes found in organisms in which DSB-repair is required for proper synapsis during meiosis are also found in C. glabrata, K. lactis, and D. hansenii but not in Y. lipolytica, suggesting that two modes of meiotic recombination have been selected during evolution of the hemiascomycetous yeasts. In addition, we found that SGS1 and TOP1, respectively, a DEAD/DEAH helicase and a type I topoisomerase, are duplicated in C. glabrata and that SRS2, a helicase involved in homologous recombination, is tandemly duplicated in K. lactis. Phylogenetic analyses show that the duplicated SGS1 gene evolved faster than the original gene, probably leading to a specialization of function of the duplicated copy.  相似文献   
33.

Background

Near infrared spectroscopy (NIRS) is used to assess muscle oxygenation (MO) within skeletal muscle at rest and during aerobic exercise. Previous investigations have used a single probe placement to measure MO during various forms of exercise. However, regional MO differences have been shown to exist within the same muscle which suggests that different areas of the same muscle may have divergent MO. Thus, the aim of this study was to examine whether regional differences in MO exist within the same muscle during different types of incremental (rest, 25, 50, 75, 100 % of maximum) exercise (1 leg knee extension (KE), 2 leg KE, or cycling).

Methods

Nineteen healthy active males (Mean ± SD: Age 27 ± 4 yrs; VO2max: 55 ± 11 mL/kg/min) performed incremental exercise to fatigue using each mode of exercise. NIRS probes were placed on the distal and proximal portion of right leg vastus lateralis (VL). Results were analyzed with a 3-way mixed model ANOVA (probe × intensity × mode).

Results

Differences in MO exist within the VL for each mode of exercise, however these differences were not consistent for each level of intensity. Comparison of MO revealed that the distal region of VL was significantly lower throughout KE exercise (1 leg KE proximal MO – distal MO = 9.9 %; 2 leg KE proximal MO – distal MO = 13 %). In contrast, the difference in MO between proximal and distal regions of VL was smaller in cycling and was not significantly different at heavy workloads (75 and 100 % of maximum).

Conclusion

MO is different within the same muscle and the pattern of the difference will change depending on the mode and intensity of exercise. Future investigations should limit conclusions on MO to the area under assessment as well as the type and intensity of exercise employed.
  相似文献   
34.
The Fc gamma receptors have been shown to play important roles in the initiation and regulation of many immunological and inflammatory processes and to amplify and refine the immune response to an infection. We have investigated the hypothesis that polymorphism within the FCGR genetic locus is associated with giant cell arteritis (GCA). Biallelic polymorphisms in FCGR2A, FCGR3A, FCGR3B and FCGR2B were examined for association with biopsy-proven GCA (n = 85) and healthy ethnically matched controls (n = 132) in a well-characterised cohort from Lugo, Spain. Haplotype frequencies and linkage disequilibrium (D') were estimated across the FCGR locus and a model-free analysis performed to determine association with GCA. There was a significant association between FCGR2A-131RR homozygosity (odds ratio (OR) 2.10, 95% confidence interval (CI) 1.12 to 3.77, P = 0.02, compared with all others) and carriage of FCGR3A-158F (OR 3.09, 95% CI 1.10 to 8.64, P = 0.03, compared with non-carriers) with susceptibility to GCA. FCGR haplotypes were examined to refine the extent of the association. The haplotype showing the strongest association with GCA susceptibility was the FCGR2A-FCGR3A 131R-158F haplotype (OR 2.84, P = 0.01 for homozygotes compared with all others). There was evidence of a multiplicative joint effect between homozygosity for FCGR2A-131R and HLA-DRB1*04 positivity, consistent with both of these two genetic factors contributing to the risk of disease. The risk of GCA in HLA-DRB1*04 positive individuals homozygous for the FCGR2A-131R allele is increased almost six-fold compared with those with other FCGR2A genotypes who are HLA-DRB1*04 negative. We have demonstrated that FCGR2A may contribute to the 'susceptibility' of GCA in this Spanish population. The increased association observed with a FCGR2A-FCGR3A haplotype suggests the presence of additional genetic polymorphisms in linkage disequilibrium with this haplotype that may contribute to disease susceptibility. These findings may ultimately provide new insights into disease pathogenesis.  相似文献   
35.
36.
Ribosome synthesis entails the formation of mature rRNAs from long precursor molecules, following a complex pre-rRNA processing pathway. Why the generation of mature rRNA ends is so complicated is unclear. Nor is it understood how pre-rRNA processing is coordinated at distant sites on pre-rRNA molecules. Here we characterized, in budding yeast and human cells, the evolutionarily conserved protein Las1. We found that, in both species, Las1 is required to process ITS2, which separates the 5.8S and 25S/28S rRNAs. In yeast, Las1 is required for pre-rRNA processing at both ends of ITS2. It is required for Rrp6-dependent formation of the 5.8S rRNA 3' end and for Rat1-dependent formation of the 25S rRNA 5' end. We further show that the Rat1-Rai1 5'-3' exoribonuclease (exoRNase) complex functionally connects processing at both ends of the 5.8S rRNA. We suggest that pre-rRNA processing is coordinated at both ends of 5.8S rRNA and both ends of ITS2, which are brought together by pre-rRNA folding, by an RNA processing complex. Consistently, we note the conspicuous presence of ~7- or 8-nucleotide extensions on both ends of 5.8S rRNA precursors and at the 5' end of pre-25S RNAs suggestive of a protected spacer fragment of similar length.  相似文献   
37.
38.
39.
Enrichment of four tandem repeats of guanine (G) rich and cytosine (C) rich sequences in functionally important regions of human genome forebodes the biological implications of four-stranded DNA structures, such as G-quadruplex and i-motif, that can form in these sequences. However, there have been few reports on the intramolecular formation of non-B DNA structures in less than four tandem repeats of G or C rich sequences. Here, using mechanical unfolding at the single-molecule level, electrophoretic mobility shift assay (EMSA), circular dichroism (CD), and ultraviolet (UV) spectroscopy, we report an intramolecularly folded non-B DNA structure in three tandem cytosine rich repeats, 5'-TGTC4ACAC4TGTC4ACA (ILPR-I3), in the human insulin linked polymorphic region (ILPR). The thermal denaturation analyses of the sequences with systematic C to T mutations have suggested that the structure is linchpinned by a stack of hemiprotonated cytosine pairs between two terminal C4 tracts. Mechanical unfolding and Br(2) footprinting experiments on a mixture of the ILPR-I3 and a 5'-C4TGT fragment have further indicated that the structure serves as a building block for intermolecular i-motif formation. The existence of such a conformation under acidic or neutral pH complies with the strand-by-strand folding pathway of ILPR i-motif structures.  相似文献   
40.
Small nucleolar RNAs (snoRNAs) orchestrate the modification and cleavage of pre-rRNA and are essential for ribosome biogenesis. Recent data suggest that after nucleoplasmic synthesis, snoRNAs transiently localize to the Cajal body (in plant and animal cells) or the homologous nucleolar body (in budding yeast) for maturation and assembly into snoRNPs prior to accumulation in their primary functional site, the nucleolus. However, little is known about the trans-acting factors important for the intranuclear trafficking and nucleolar localization of snoRNAs. Here, we describe a large-scale genetic screen to identify proteins important for snoRNA transport in Saccharomyces cerevisiae. We performed fluorescence in situ hybridization analysis to visualize U3 snoRNA localization in a collection of temperature-sensitive yeast mutants. We have identified Nop4, Prp21, Tao3, Sec14, and Htl1 as proteins important for the proper localization of U3 snoRNA. Mutations in genes encoding these proteins lead to specific defects in the targeting or retention of the snoRNA to either the nucleolar body or the nucleolus. Additional characterization of the mutants revealed impairment in specific steps of U3 snoRNA processing, demonstrating that snoRNA maturation and trafficking are linked processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号