首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   580篇
  免费   56篇
  2023年   2篇
  2022年   5篇
  2021年   18篇
  2020年   6篇
  2019年   6篇
  2018年   14篇
  2017年   12篇
  2016年   27篇
  2015年   36篇
  2014年   47篇
  2013年   49篇
  2012年   52篇
  2011年   69篇
  2010年   41篇
  2009年   30篇
  2008年   47篇
  2007年   39篇
  2006年   47篇
  2005年   28篇
  2004年   18篇
  2003年   17篇
  2002年   12篇
  1999年   4篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1990年   2篇
  1985年   1篇
  1947年   1篇
  1940年   1篇
排序方式: 共有636条查询结果,搜索用时 250 毫秒
41.
According to the current, widely accepted paradigm, the evolutionary transition from hermaphroditism toward separate sexes occurs in two successive steps: an initial, intermediate step in which unisexual individuals, male or female, sterility mutants coexist with hermaphrodites and a final step that definitively establishes dioecy. Two nonexclusive processes can drive this transition: inbreeding avoidance and reallocation of resources from one sexual function to the other. Here, we report results of controlled crosses between males and hermaphrodites in Phillyrea angustifolia, an androdioecious species with two mutually intercompatible, but intraincompatible groups of hermaphrodites. We observed different segregation patterns that can be explained by: (1) epistatic interactions between two unlinked diallelic loci, determining sex and mating compatibility, and (2) a mutation with pleiotropic effects: female sterility, full compatibility of males with both hermaphrodite incompatibility groups, and complete male‐biased sex‐ratio distortion in one of the two groups. Modeling shows that these mechanisms can explain the high frequency of males in populations of P. angustifolia and can promote the maintenance of androdioecy without requiring inbreeding depression or resource reallocation. We thus argue that segregation distortion establishes the right conditions for the evolution of cryptic dioecy and potentially initiates the evolution toward separate sexes.  相似文献   
42.
43.

Background

In vivo phosphorylation of sphingosine analogs with their ensuing binding and activation of their cell-surface sphingosine-1-phosphate receptors is regarded as the main immunomodulatory mechanism of this new class of drugs. Prophylactic treatment with sphingosine analogs interferes with experimental asthma by impeding the migration of dendritic cells to draining lymph nodes. However, whether these drugs can also alleviate allergic airway inflammation after its onset remains to be determined. Herein, we investigated to which extent and by which mechanisms the sphingosine analog AAL-R interferes with key features of asthma in a murine model during ongoing allergic inflammation induced by Dermatophagoides pteronyssinus.

Methods

BALB/c mice were exposed to either D. pteronyssinus or saline, intranasally, once-daily for 10 consecutive days. Mice were treated intratracheally with either AAL-R, its pre-phosphorylated form AFD-R, or the vehicle before every allergen challenge over the last four days, i.e. after the onset of allergic airway inflammation. On day 11, airway responsiveness to methacholine was measured; inflammatory cells and cytokines were quantified in the airways; and the numbers and/or viability of T cells, B cells and dendritic cells were assessed in the lungs and draining lymph nodes.

Results

AAL-R decreased airway hyperresponsiveness induced by D. pteronyssinus by nearly 70%. This was associated with a strong reduction of IL-5 and IL-13 levels in the airways and with a decreased eosinophilic response. Notably, the lung CD4+ T cells were almost entirely eliminated by AAL-R, which concurred with enhanced apoptosis/necrosis in that cell population. This inhibition occurred in the absence of dendritic cell number modulation in draining lymph nodes. On the other hand, the pre-phosphorylated form AFD-R, which preferentially acts on cell-surface sphingosine-1-phosphate receptors, was relatively impotent at enhancing cell death, which led to a less efficient control of T cell and eosinophil responses in the lungs.

Conclusion

Airway delivery of the non-phosphorylated sphingosine analog, but not its pre-phosphorylated counterpart, is highly efficient at controlling the local T cell response after the onset of allergic airway inflammation. The mechanism appears to involve local induction of lymphocyte apoptosis/necrosis, while mildly affecting dendritic cell and T cell accumulation in draining lymph nodes.  相似文献   
44.
45.
Segregation of replicated chromosomes is an essential process in all organisms. How bacteria, such as the oval-shaped human pathogen Streptococcus pneumoniae, efficiently segregate their chromosomes is poorly understood. Here we show that the pneumococcal homologue of the DNA-binding protein ParB recruits S. pneumoniae condensin (SMC) to centromere-like DNA sequences (parS) that are located near the origin of replication, in a similar fashion as was shown for the rod-shaped model bacterium Bacillus subtilis. In contrast to B. subtilis, smc is not essential in S. pneumoniae, and Δsmc cells do not show an increased sensitivity to gyrase inhibitors or high temperatures. However, deletion of smc and/or parB results in a mild chromosome segregation defect. Our results show that S. pneumoniae contains a functional chromosome segregation machine that promotes efficient chromosome segregation by recruitment of SMC via ParB. Intriguingly, the data indicate that other, as of yet unknown mechanisms, are at play to ensure proper chromosome segregation in this organism.  相似文献   
46.
The aim of this study was to analyse the effects of species geographical and environmental ranges on the predictive performances of species distribution models (SDMs). We explored the usefulness of ensemble modelling approaches and tested whether species attributes influenced the outcomes of such approaches. Eight SDMs were used to model the current distribution of 35 fish species at 1110 stream sections in France. We first quantified the consensus among the resulting set of predictions for each fish species. Next, we created an average model by taking the average of the individual model predictions and tested whether the average model improved the predictive performances of single SDMs. Lastly, we described the ranges of fish species along four gradients: latitudinal, thermal, stream gradient (i.e. upstream‐downstream) and elevation. After accounting for the effects of phylogenetic relatedness and species prevalence, these four species attributes were related to the observed variations in both consensus among SDMs and predictive performances by using generalized estimation equations. Our results highlight the usefulness of ensemble approaches for identifying geographical areas of agreement among predictions. Although the geographical extent of species had no effect on the performances of SDMs, we demonstrated that more consensual and accurate predictions were obtained for species with low thermal and elevation ranges, validating the hypothesis that specialist species yield models with higher accuracy than generalist ones. We emphasized that significant improvements in the accuracy of SDMs can be achieved by using an average model. Furthermore, these improvements were higher for species with smaller ranges along the four gradients studied. The geographical extent and ranges of species along environmental gradients provide promising insights into our understanding of uncertainties in species distribution modelling.  相似文献   
47.
Fibrillin proteins are the major components of extracellular microfibrils found in many connective tissues. Fibrillin-1 and fibrillin-2 are well studied and mutations in these proteins cause a number of fibrillinopathies including Marfan syndrome and congenital contractural arachnodactyly, respectively. Fibrillin-3 was more recently discovered and is much less well characterized. Fibrillin-1 is expressed throughout life, whereas fibrillins-2 and -3 are thought to be primarily present during development. Here, we report detailed fibrillin-3 expression patterns in early human development.A polyclonal antiserum against a C-terminal recombinant half of human fibrillin-3 was produced in rabbit. Anti-fibrillin-3 antibodies were affinity-purified and antibodies cross-reacting with the other fibrillins were removed by absorption resulting in specific anti-fibrillin-3 antibodies. Immunohistochemical analyses with these purified antibodies demonstrate that fibrillin-3 is temporally expressed in numerous tissues relatively evenly from the 6th to the 12th gestational week. Fibrillin-3 was found spatially expressed in perichondrium, perineurium, perimysium, skin, developing bronchi, glomeruli, pancreas, kidney, heart and testis and at the prospective basement membranes in developing epithelia and endothelia. Double immunohistochemical analyses showed that all fibrillins are globally expressed in the same organs, with a number of differences on the tissue level in cartilage, perichondrium and developing bronchi. These results suggest that fibrillin-3, compared to the other fibrillins, fulfills both overlapping and distinct functions in human development.  相似文献   
48.

Background  

Streptococcus suis is a major swine pathogen worldwide that causes meningitis, septicemia, arthritis, and endocarditis. Using animal models, a surface-associated subtilisin-like protease (SspA) has recently been shown to be an important virulence factor for S. suis. In this study, we hypothesized that the S. suis SspA subtilisin-like protease may modulate cytokine secretion by macrophages thus contributing to the pathogenic process of meningitis.  相似文献   
49.

Background

FAD dependent glucose dehydrogenase (GDH) currently raises enormous interest in the field of glucose biosensors. Due to its superior properties such as high turnover rate, substrate specificity and oxygen independence, GDH makes its way into glucose biosensing. The recently discovered GDH from the ascomycete Glomerella cingulata is a novel candidate for such an electrochemical application, but also of interest to study the plant-pathogen interaction of a family of wide-spread, crop destroying fungi. Heterologous expression is a necessity to facilitate the production of GDH for biotechnological applications and to study its physiological role in the outbreak of anthracnose caused by Glomerella (anamorph Colletotrichum) spp.

Results

Heterologous expression of active G. cingulata GDH has been achieved in both Escherichia coli and Pichia pastoris, however, the expressed volumetric activity was about 4800-fold higher in P. pastoris. Expression in E. coli resulted mainly in the formation of inclusion bodies and only after co-expression with molecular chaperones enzymatic activity was detected. The fed-batch cultivation of a P. pastoris transformant resulted in an expression of 48,000 U L-1 of GDH activity (57 mg L-1). Recombinant GDH was purified by a two-step purification procedure with a yield of 71%. Comparative characterization of molecular and catalytic properties shows identical features for the GDH expressed in P. pastoris and the wild-type enzyme from its natural fungal source.

Conclusions

The heterologous expression of active GDH was greatly favoured in the eukaryotic host. The efficient expression in P. pastoris facilitates the production of genetically engineered GDH variants for electrochemical-, physiological- and structural studies.  相似文献   
50.
During chronic kidney disease (CKD), solutes called uremic solutes, accumulate in blood and tissues of patients. We developed an HPLC method for the simultaneous determination of several uremic solutes of clinical interest in biological fluids: phenol (Pol), indole-3-acetic acid (3-IAA), p-cresol (p-C), indoxyl sulfate (3-INDS) and p-cresol sulfate (p-CS). These solutes were separated by ion-pairing HPLC using an isocratic flow and quantified with a fluorescence detection. The mean serum concentrations of 3-IAA, 3-INDS and p-CS were 2.12, 1.03 and 13.03 μM respectively in healthy subjects, 3.21, 17.45 and 73.47 μM in non hemodialyzed stage 3-5 CKD patients and 5.9, 81.04 and 120.54 μM in hemodialyzed patients (stage 5D). We found no Pol and no p-C in any population. The limits of quantification for 3-IAA, 3-INDS, and p-CS were 0.83, 0.72, and 3.2 μM respectively. The within-day CVs were between 1.23 and 3.12% for 3-IAA, 0.98 and 2% for 3-INDS, and 1.25 and 3.01% for p-CS. The between-day CVs were between 1.78 and 5.48% for 3-IAA, 1.45 and 4.54% for 3-INDS, and 1.19 and 6.36% for p-CS. This HPLC method permits the simultaneous and quick quantification of several uremic solutes for daily analysis of large numbers of samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号