首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   608篇
  免费   44篇
  2022年   4篇
  2021年   7篇
  2020年   15篇
  2019年   11篇
  2018年   12篇
  2017年   12篇
  2016年   15篇
  2015年   21篇
  2014年   21篇
  2013年   31篇
  2012年   32篇
  2011年   23篇
  2010年   19篇
  2009年   12篇
  2008年   24篇
  2007年   34篇
  2006年   27篇
  2005年   20篇
  2004年   14篇
  2003年   15篇
  2002年   14篇
  2001年   11篇
  2000年   19篇
  1999年   16篇
  1998年   7篇
  1997年   8篇
  1996年   9篇
  1995年   4篇
  1994年   5篇
  1993年   9篇
  1992年   8篇
  1991年   9篇
  1990年   11篇
  1989年   13篇
  1988年   8篇
  1987年   10篇
  1986年   11篇
  1985年   10篇
  1984年   12篇
  1983年   9篇
  1982年   5篇
  1981年   7篇
  1980年   6篇
  1979年   10篇
  1977年   6篇
  1975年   7篇
  1974年   4篇
  1973年   5篇
  1972年   5篇
  1968年   4篇
排序方式: 共有652条查询结果,搜索用时 31 毫秒
31.
A prospective study of 500 patients was performed to determine the reasons for requesting radiographs in an accident and emergency department. Most examinations were requested either to confirm a clinically suspected abnormality or because of difficulty in excluding a significant bone injury on clinical grounds alone. Several requests were also made to reassure the patient. Medicolegal reasons were relatively few, and those made purely because the doctor feared litigation probably accounted for only 5% of requests. Undue emphasis on the medicolegal aspects of accident and emergency radiography in the United Kingdom is unhelpful in that it directs attention away from the real reasons for x-ray referral. Although a reduction in the number of x-ray examinations is desirable on the grounds of expense and radiation exposure it is likely to be obtained only by improving experience and acumen in the clinical assessment of injuries.  相似文献   
32.
The process of adaptation can be highly dependent upon historical and contemporary factors, especially in environmentally and topographically complex regions affected by Pleistocene glaciations. Here, we investigate Hilaria jamesii (Poaceae), a dryland C4 graminoid, to test how patterns of adaptive genetic variation are linked to its glacial and post-glacial history. We show that the species persisted in a single, southern refugium during the last glacial period and subsequently migrated throughout its current distribution concurrent with post-glacial warming. The species’ putative adaptive genetic variation correlates with climatic gradients (e.g. monsoon precipitation and mean diurnal temperature range) that covary with the species’ probable route of demographic expansion. The short timescale and multiple climatic dimensions of adaptation imply that natural selection acted primarily upon standing genetic variation. These findings suggest that restoration and conservation practices should prioritize the maintenance of standing genetic variation to ensure that species have the capacity to respond to future environmental changes.  相似文献   
33.
34.
Accumulating evidence has revealed that livin gene and BCL-2 modifying factor (BMF) gene are closely associated with the initiation and progression of colon carcinoma by activating or suppressing multiple malignant processes. Those genes that can detect colon - cancer are a promising approach for cancer screening and diagnosis. This study aimed to evaluate correlation between livin, BMF and p53 genes expression in colon cancer tissues of patients included in the study, and their relationship with clinicopathological features and survival outcome in those patients. In this study, 50 pathologically diagnosed early cancer colon patients included and their tissue biopsy with 50 matched adjacent normal tissue, and 50 adenoma tissue specimens were analyzed for livin gene and BMF gene expressions using real time PCR. The relationship of those genes expressions with clinicopathological features, tumor markers, Time to Progression and overall survival for those patients were correlated in cancer colon group. In this study, there was a significant a reciprocal relationship between over expression of livin gene and down regulation of BMF and p53 genes in colon cancer cells. Livin mRNA was significantly higher, while BMF and p53 mRNA were significantly lower in colorectal cancer tissue compared to benign and normal colon tissue specimens (P < 0.001), however, this finding was absent between colon adenomas and normal mucosa. There was a significant association between up regulation of livin and down regulation of BMF and p53 expressions with more aggressive tumor (advanced TNM stage), rapid progression with metastasis and decreased overall survival in cancer colon patients, hence these genes can serve as significant prognostic markers of poor outcome in colon cancer patients. This work highlights the role of livin, BMF and p53 genes in colorectal tumorigenesis and the applicability of using those genes as a diagnostic and prognostic markers in patients with colon carcinoma and as a good target for cancer colon treatment in the future.  相似文献   
35.
Lignin is a critical structural component of plants, providing vascular integrity and mechanical strength. Lignin precursors (monolignols) must be exported to the extracellular matrix where random oxidative coupling produces a complex lignin polymer. The objectives of this study were twofold: to determine the timing of lignification with respect to programmed cell death and to test if nonlignifying xylary parenchyma cells can contribute to the lignification of tracheary elements and fibers. This study demonstrates that lignin deposition is not exclusively a postmortem event, but also occurs prior to programmed cell death. Radiolabeled monolignols were not detected in the cytoplasm or vacuoles of tracheary elements or neighbors. To experimentally define which cells in lignifying tissues contribute to lignification in intact plants, a microRNA against CINNAMOYL CoA-REDUCTASE1 driven by the promoter from CELLULOSE SYNTHASE7 (ProCESA7:miRNA CCR1) was used to silence monolignol biosynthesis specifically in cells developing lignified secondary cell walls. When monolignol biosynthesis in ProCESA7:miRNA CCR1 lines was silenced in the lignifying cells themselves, but not in the neighboring cells, lignin was still deposited in the xylem secondary cell walls. Surprisingly, a dramatic reduction in cell wall lignification of extraxylary fiber cells demonstrates that extraxylary fibers undergo cell autonomous lignification.  相似文献   
36.
In this study, we performed electrophysiological analysis of Anopheles gambiae Sua-1B cells having “neuron-like” morphologies using the patch clamp method. The recorded cells (n = 79) had processes resembling axons/dendrites, with 63 % unipolar, 22 % bipolar, and 15 % multipolar. While no inward currents were observed following step depolarizations (holding potential = ?80 mV), a slowly activating outward current was observed in 96 % of the cells, especially at depolarized potentials. The amplitude of the current was attenuated nearly 70 % by reducing extracellular Cl? ion concentration, or by incubating with 100 μM DIDS, a known voltage-sensitive chloride channel blocker, suggesting that the current was mediated by chloride ions. No qualitative difference was found between recordings made with Cs+ ions in the intracellular pipette solution (inhibits K+ currents) and those made with normal physiological solution, indicating a deficiency of potassium channels. Additionally, recordings made with Ca2+-free extracellular bath solution eliminated the slowly activating outward current. A subset of cells (n = 3) lacked this current, but had outward currents with voltage-dependent properties similar to those of volume-regulated chloride channels. Taken together, our results suggest that the voltage-sensitive currents observed in the majority of Sua-1B cells are mediated primarily by chloride channels of the calcium-dependent subtype.  相似文献   
37.
38.
Essential oils of fennel, peppermint, caraway, eucalyptus, geranium and lemon were tested for their antimicrobial activities against some plant pathogenic micro-organisms (Fusarium oxysporum, Alternaria alternate, Penicilium italicum Penicilium digitatum and Botyritus cinerea). Essential oils of fennel, peppermint, caraway were selected as an active ingredient for the formulation of biocides due to their efficiency in controlling the tested micro-organisms. Successful emulsifiable concentrates (biocides) were prepared from these oils using different emulsifiers (Emulgator B.L.M. Tween20 and Tween80) and different fixed oils (sesame, olive, cotton and soybean oils). Physico-chemical properties of the formulated biocide (spontaneous emulsification, emulsion stability test, cold stability and heat stability tests as well as viscosity, surface tension and pH) were measured. The prepared biocides were ready to be tested for application in a future work as a safe pesticide against different pathogens.  相似文献   
39.
The actin and microtubule cytoskeletons regulate cell shape across phyla, from bacteria to metazoans. In organisms with cell walls, the wall acts as a primary constraint of shape, and generation of specific cell shape depends on cytoskeletal organization for wall deposition and/or cell expansion. In higher plants, cortical microtubules help to organize cell wall construction by positioning the delivery of cellulose synthase (CesA) complexes and guiding their trajectories to orient newly synthesized cellulose microfibrils. The actin cytoskeleton is required for normal distribution of CesAs to the plasma membrane, but more specific roles for actin in cell wall assembly and organization remain largely elusive. We show that the actin cytoskeleton functions to regulate the CesA delivery rate to, and lifetime of CesAs at, the plasma membrane, which affects cellulose production. Furthermore, quantitative image analyses revealed that actin organization affects CesA tracking behavior at the plasma membrane and that small CesA compartments were associated with the actin cytoskeleton. By contrast, localized insertion of CesAs adjacent to cortical microtubules was not affected by the actin organization. Hence, both actin and microtubule cytoskeletons play important roles in regulating CesA trafficking, cellulose deposition, and organization of cell wall biogenesis.Plant cells are surrounded by a flexible yet durable extracellular matrix that makes up the cell wall. This structure offers mechanical strength that counters osmotically driven turgor pressure, is an important factor for water movement in plants, acts as a physical barrier against pathogens (Somerville et al., 2004), and is a determining factor for plant cell morphogenesis. Hence, the cell wall plays a central role in plant biology.Two main types of cell walls can typically be distinguished: the primary and the secondary cell wall. The major load-bearing component in both of these cell walls is the β-1,4-linked glucan polymer cellulose (Somerville et al., 2004). Cellulose polymers are synthesized by plasma membrane (PM)-localized cellulose synthase (CesA) complexes (Mueller and Brown, 1980), which contain several CesA subunits with similar amino acid sequences (Mutwil et al., 2008a). The primary wall CesA complexes are believed to be assembled in the Golgi and are subsequently delivered to the PM via vesicular trafficking (Gutierrez et al., 2009), sometimes associated with Golgi pausing (Crowell et al., 2009). Furthermore, the primary wall CesA complexes are preferentially inserted into the PM at sites that coincide with cortical microtubules (MTs), which subsequently guide cellulose microfibril deposition (Gutierrez et al., 2009). Hence, the cortical MT array is a determinant for multiple aspects of primary wall cellulose production.The actin cytoskeleton plays a crucial role in organized deposition of cell wall polymers in many cell types, including cellulose-related polymers and pectins in tip-growing cells, such as pollen tubes and root hairs (Hu et al., 2003; Chen et al., 2007). Thus, actin-depolymerizing drugs and genetic manipulation of ACTIN genes impair directed expansion of tip-growing cells and long-distance transport of Golgi bodies with vesicles to growing regions (Ketelaar et al., 2003; Szymanski, 2005). In diffusely growing cells in roots and hypocotyls, loss of anisotropic growth has also been observed in response to mutations to vegetative ACTIN genes and to actin-depolymerizing and -stabilizing drugs (Baluska et al., 2001; Kandasamy et al., 2009). While actin is clearly important for cell wall assembly, it is less clear what precise roles it plays.One well-known function of actin in higher plants is to support intracellular movement of cytoplasmic organelles via actomyosin-based motility (Geisler et al., 2008; Szymanski, 2009). During primary wall synthesis in interphase cells, treatment with the actin assembly inhibitor latrunculin B (LatB) led to inhibition of Golgi motility and pronounced inhomogenities in CesA density at the PM (Crowell et al., 2009; Gutierrez et al., 2009) that coincided with the density of underlying and immobile Golgi bodies (Gutierrez et al., 2009). These results suggested that Golgi motility is important for CesA distribution (Gutierrez et al., 2009). The actin cytoskeleton also appears to be important for secondary wall cellulose microfibril deposition. For example, longitudinal actin filaments (AFs) define the movement of secondary wall CesA-containing Golgi bodies in developing xylem vessels (Wightman and Turner, 2008). In addition, it has been proposed that the AFs also can regulate the delivery of the secondary wall CesA complex to the PM via pausing of the Golgi (Wightman and Turner, 2008). It is therefore clear that actin organization is important for CesA distribution and for the pattern of cellulose microfibril deposition.Despite the above findings, very few reports have undertaken detailed studies to elucidate the role of the actin cytoskeleton in the distribution and trafficking of specific proteins in plant cells. Here, we have investigated the intracellular trafficking of CesA-containing vesicles and delivery of CesAs to the PM, in the context of the actin cytoskeleton. We quantitatively demonstrate that the organization of the actin cytoskeleton regulates CesA-containing Golgi distribution and the exocytic and endocytic rate of the CesAs. However, actin organization has no effect on the localized insertion of CesAs at sites of MTs at the PM.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号