首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5086篇
  免费   428篇
  国内免费   279篇
  2024年   10篇
  2023年   45篇
  2022年   100篇
  2021年   206篇
  2020年   129篇
  2019年   182篇
  2018年   210篇
  2017年   139篇
  2016年   234篇
  2015年   323篇
  2014年   372篇
  2013年   330篇
  2012年   458篇
  2011年   428篇
  2010年   260篇
  2009年   250篇
  2008年   268篇
  2007年   253篇
  2006年   216篇
  2005年   201篇
  2004年   184篇
  2003年   163篇
  2002年   167篇
  2001年   100篇
  2000年   67篇
  1999年   70篇
  1998年   61篇
  1997年   42篇
  1996年   41篇
  1995年   36篇
  1994年   29篇
  1993年   23篇
  1992年   21篇
  1991年   27篇
  1990年   23篇
  1989年   20篇
  1988年   9篇
  1987年   10篇
  1986年   14篇
  1985年   17篇
  1983年   9篇
  1982年   7篇
  1981年   10篇
  1980年   3篇
  1979年   5篇
  1978年   3篇
  1976年   2篇
  1972年   5篇
  1971年   3篇
  1969年   3篇
排序方式: 共有5793条查询结果,搜索用时 125 毫秒
151.
152.
For pulse legume research to fully capitalise on developments in plant molecular genetics, a high throughput genetic transformation methodology is required. In Western Australia the dominant grain legume is Lupinus angustifolius L. (narrow leafed lupin; NLL). Standard transformation methodology utilising Agrobacterium tumefaciens on wounded NLL seedling shoot apices, in combination with two different herbicide selections (phosphinothricin and glyphosate) is time consuming, inefficient, and produces chimeric shoots that often fail to yield transgenic progeny. Investigation of hygromycin as an alternative selection in combination with expression of green fluorescent protein indicated that transformation of NLL apical cells was not the rate limiting step to achieve transgenic shoot materials. In this research it was identified that despite ready transformation, apical cells were not competent to regenerate. However a deep and broad wounding procedure to expose underlying axillary shoot and vascular cells to Agrobacterium, in combination with delayed selection proved successful, increasing initial explants transformation efficiency up to 75?% and generating axillary shoots with significant transgenic content. Based on knowledge gained from studies of plant chimeras, further subculture of these initial axillary shoots will result in development of low chimeric transgenic materials with heritable content. Furthermore, the method was also tested successfully on other Lupinus species, faba bea and field pea. These results demonstrate that development of a high yielding transformation methodology for pulse legume crops is achievable.  相似文献   
153.
154.
155.
156.
Cardiorespiratory fitness (VO2 peak) declines with age and is an independent risk factor for morbidity and mortality in older adults. Identifying biomarkers of low fitness may provide insight for why some individuals experience an accelerated decline of aerobic capacity and may serve as clinically valuable prognostic indicators of cardiovascular health. We investigated the relationship between circulating ceramides and VO2 peak in 443 men and women (mean age of 69) enrolled in the Baltimore Longitudinal Study of Aging (BLSA). Individual species of ceramide were quantified by HPLC–tandem mass spectrometry. VO2 peak was measured by a graded treadmill test. We applied multiple regression models to test the associations between ceramide species and VO2 peak, while adjusting for age, sex, blood pressure, serum LDL, HDL, triglycerides, and other covariates. We found that higher levels of circulating C18:0, C20:0, C24:1 ceramides and C20:0 dihydroceramides were strongly associated with lower aerobic capacity (< 0.001, < 0.001, = 0.018, and < 0.001, respectively). The associations held true for both sexes (with men having a stronger association than women, P value for sex interaction <0.05) and were unchanged after adjusting for confounders and multiple comparison correction. Interestingly, no significant association was found for C16:0, C22:0, C24:0, C26:0, and C22:1 ceramide species, C24:0 dihydroceramide, or total ceramides. Our analysis reveals that specific long‐chain ceramides strongly associate with low cardiovascular fitness in older adults and may be implicated in the pathogenesis of low fitness with aging. Longitudinal studies are needed to further validate these associations and investigate the relationship between ceramides and health outcomes.  相似文献   
157.
DNA methylation plays major roles in many biological processes, including aging, carcinogenesis, and development. Analyses of DNA methylation using next‐generation sequencing offer a new way to profile and compare methylomes across the genome in the context of aging. We explored genomewide DNA methylation and the effects of short‐term calorie restriction (CR) on the methylome of aged rat kidney. Whole‐genome methylation of kidney in young (6 months old), old (25 months old), and OCR (old with 4‐week, short‐term CR) rats was analyzed by methylated DNA immunoprecipitation and next‐generation sequencing (MeDIP‐Seq). CpG islands and repetitive regions were hypomethylated, but 5′‐UTR, exon, and 3′‐UTR hypermethylated in old and OCR rats. The methylation in the promoter and intron regions was decreased in old rats, but increased in OCR rats. Pathway enrichment analysis showed that the hypermethylated promoters in old rats were associated with degenerative phenotypes such as cancer and diabetes. The hypomethylated promoters in old rats related significantly to the chemokine signaling pathway. However, the pathways significantly enriched in old rats were not observed from the differentially methylated promoters in OCR rats. Thus, these findings suggest that short‐term CR could partially ameliorate age‐related methylation changes in promoters in old rats. From the epigenomic data, we propose that the hypermethylation found in the promoter regions of disease‐related genes during aging may indicate increases in susceptibility to age‐related diseases. Therefore, the CR‐induced epigenetic changes that ameliorate age‐dependent aberrant methylation may be important to CR's health‐ and life‐prolonging effects.  相似文献   
158.
Bleeding is a clinical characteristic of severe dengue and may be due to increased vascular permeability. However, the pathogenesis of severe dengue remains unclear. In this study, we showed that the Rac1-microfilament signal pathway was involved in the process of DENV serotype 2 (DENV2) infection in EAhy926 cells. DENV2 infection induced dynamic changes in actin organization, and treatment with Cytochalasin D or Jasplakinolide disrupted microfilament dynamics, reduced DENV2 entry, and inhibited DENV2 assembly and maturation. Rac1 activities decreased during the early phase and gradually increased by the late phase of infection. Expression of the dominant-negative form of Rac1 promoted DENV2 entry but inhibited viral assembly, maturation and release. Our findings demonstrated that Rac1 plays an important role in the DENV2 life cycle by regulating actin reorganization in EAhy926 cells. This finding provides further insight into the pathogenesis of severe dengue.  相似文献   
159.
A simple naphthol‐based fluorescent receptor 1 was prepared and evaluated for its fluorescence response to heavy metal ions. Receptor 1 exhibits an ‘off‐on‐type’ mode with high selectivity in the presence of Zn2+ ion. The selectivity of 1 for Zn2+ is the consequence of combined effects of chelation‐enhanced fluorescence (CHEF), C = N isomerization and π–π stacking interaction between the two naphthalene rings. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
160.
Kir2.1 (also known as IRK1) plays key roles in regulation of resting membrane potential and cell excitability. To achieve its physiological roles, Kir2.1 performs a series of conformational transition, named as gating. However, the structural basis of gating is still obscure. Here, we combined site‐directed mutation, two‐electrode voltage clamp with molecular dynamics simulations and determined that H221 regulates the gating process of Kir2.1 by involving a weak interaction network. Our data show that the H221R mutant accelerates the rundown kinetics and decelerates the reactivation kinetics of Kir2.1. Compared with the WT channel, the H221R mutation strengthens the interaction between the CD‐ and G‐loops (E303‐R221) which stabilizes the close state of the G‐loop gate and weakens the interactions between C‐linker and CD‐loop (R221‐R189) and the adjacent G‐loops (E303‐R312) which destabilizes the open state of G‐loop gate. Our data indicate that the three pairs of interactions (E303‐H221, H221‐R189 and E303‐R312) precisely regulate the G‐loop gate by controlling the conformation of G‐loop. Proteins 2016; 84:1929–1937. © 2016 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号