首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   20篇
  201篇
  2022年   6篇
  2021年   6篇
  2020年   5篇
  2018年   5篇
  2017年   3篇
  2016年   4篇
  2015年   8篇
  2014年   5篇
  2013年   19篇
  2012年   6篇
  2011年   7篇
  2010年   13篇
  2009年   7篇
  2008年   5篇
  2007年   5篇
  2005年   3篇
  2004年   5篇
  2003年   2篇
  2001年   4篇
  1999年   4篇
  1998年   4篇
  1997年   5篇
  1996年   5篇
  1995年   3篇
  1993年   2篇
  1992年   2篇
  1991年   5篇
  1990年   2篇
  1988年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1975年   3篇
  1974年   2篇
  1973年   1篇
  1970年   1篇
  1968年   2篇
  1958年   5篇
  1957年   1篇
  1956年   2篇
  1955年   2篇
  1954年   2篇
  1953年   6篇
  1952年   4篇
  1951年   2篇
  1949年   1篇
排序方式: 共有201条查询结果,搜索用时 15 毫秒
111.
African horse sickness (AHS) is a vector-borne, infectious disease of equids caused by African horse sickness virus (AHSV) . The only proven field vector of the virus is the biting midge Culicoides imicola. Following a recent epizootic (1989–91) of AHS in Morocco, light traps and automatic weather stations were operated for 2 years at twenty-two sites distributed over much of the country. The annually-averaged mean daily trap catch of C. imicola at these sites was negatively correlated with wind speed, and positively correlated with the average and mean annual minimum NDVI (Normalized Difference Vegetation Index, a remotely sensed measure of vegetation activity). There were no significant correlations between the mean daily trap catch and air temperature, soil temperature, relative humidity, saturation deficit, rainfall, altitude or the mean annual maximum or range of NDVI. The best two-variable model, which combined WindspeedMnAvMn (the average daily minimum wind speed of the least windy month) and NDVImin (the average annual minimum NDVI) as predictors, explained over 50% of the variance in the annually-averaged mean daily trap catch of C. imicola. There was a significant, positive correlation between minimum wind speed at night and the daily mortality rate of adult female C. imicola and it is suggested that the relationship between wind speed and the abundance of C. imicola arises from effects on adult mortality or dispersal. Considering several climatic variables, in North Africa NDVImin was most significantly correlated with total annual rainfall. It is suggested that the relationship between NDVImin and the abundance of C. imicola arises from the impact of soil moisture on both. It is proposed that areas of Morocco with higher levels of soil moisture in late summer or autumn provide more, larger and/or more enduring breeding sites for C. imicola, as well as supporting more photosynthetically active vegetation and hence having higher NDVI.  相似文献   
112.
  1. Download : Download high-res image (116KB)
  2. Download : Download full-size image
Highlights
  • •Proteomics analysis was performed in two murine models of Duchenne muscular dystrophy (mdx and mdx52) at three ages (8, 16 and 80 weeks) and compared with wild-type controls.
  • •High-resolution isoelectric focusing liquid chromatography-tandem mass spectrometry enabled the quantification of 4974 proteins in all samples.
  • •This study has revealed protein signatures of dystrophin deficiency and the progression of dystrophic pathology.
  • •In contrast, the proteomes of the mdx and mdx52 mice were highly similar.
  • •Pathway analysis revealed crosstalk between inflammatory, metabolic and muscle growth processes in dystrophic muscle.
  相似文献   
113.
Species are impacted by climate change at both ecological and evolutionary time scales. Studies in northern continents have provided abundant evidence of dramatic shifts in distributions of species subsequent to the last glacial maximum (LGM), particularly at high latitudes. However, little is known about the history of southern continents, especially at high latitudes. South America is the only continent, other than Antarctica, that extends beyond 40 °S. Genetic studies of a few Patagonian species have provided seemingly conflicting results, indicating either postglacial colonization from restricted glacial refugia or persistence through glacial cycles and in situ differentiation. Using mitochondrial DNA sequences of 14 species of sigmodontine rodents, a major faunal ensemble of Patagonia and Tierra del Fuego, we show that at least nine of these species bear genetic footprints of demographic expansion from single restricted sources. However, timing of demographic expansion precedes the LGM in most of these species. Four species are fragmented phylogeographically within the region. Our results indicate that (i) demographic instability in response to historical climate change has been widespread in the Patagonian‐Fueguian region, and is generally more pronounced at high latitudes in both southern and northern continents; (ii) colonization from lower latitudes is an important component of current Patagonian‐Fueguian diversity; but (iii) in situ differentiation has also contributed to species diversity.  相似文献   
114.
A cyanobacterial bloom prevents fish trophic cascades   总被引:1,自引:0,他引:1  
1. We experimentally compared the impacts of visually feeding zooplanktivorous fish and filter‐feeding omnivorous fish in shallow tropical Dakar Bango reservoir, Senegal. We provoked a cyanobacterial Anabaena bloom under mesotrophic to eutrophic N‐limited conditions in 18 enclosures assigned to six Nile tilapia life‐stage treatments, at typical biomasses: fishless control (C), zooplanktivorous fry (Z), omnivorous juveniles (O), herbivorous fingerlings (H) and two combinations (OZ, OH). 2. All fish grew well, but as prevalent inedible phytoplankton dampened fish effects, community‐level trophic cascades did not occur. Planktivore types acted independently and affected differentially the biomasses of total zooplankton, cyclopoids, nauplii, cladocerans, invertebrate carnivores, large herbivores, colonial cyanobacteria and Chlorophyta. They neither influenced the total biomass of phytoplankton, nor most water chemistry characteristics. Responses were apparently not fish‐biomass related. The bloom collapsed synchronously in all enclosures, coinciding with enrichment ending, with a return to clear water within 12 days. 3. Our results support the hypothesis that excess nutrients and prevalent inedible cyanobacteria inhibit the cascading effects of natural biomass levels of both visually feeding zooplanktivores and filter‐feeding omnivores. In N‐limited meso‐eutrophic shallow tropical lakes with predominantly small herbivorous zooplankton, neither the type nor the biomass of planktivorous fish present seems likely to prevent the transient outburst of cyanobacterial blooms. Such fragile ecosystems may thus not sustain a trophic state suitable for drinking water production, unless human impacts are restricted. The generality of restoration approaches based on ecological engineering should be further explored.  相似文献   
115.
1. Salinity is a strong selective force for many aquatic organisms, affecting both ecological and evolutionary processes. Most of our knowledge on the effects of salinity on rotifers in the Brachionus plicatilis species complex is based mainly on populations from waterbodies that experience broad environmental changes both seasonally and annually. We tested the hypothesis that, despite the supposedly high potential for gene flow among rotifers inhabiting neighbouring environments, constant salinity has promoted local adaptation, genetic population divergence and even cryptic speciation in B. plicatilis complex populations from three deep maar lakes of distinct salinities [1.1, 6.5 and 9.0 g L?1 total dissolved solids (TDS)] in Central Mexico. 2. To look for local adaptation, we performed common garden experiments to test the effect of different salinities on population density and intrinsic growth rate (r). Then, we evaluated the genetic divergence by sequencing the cytochrome c oxidase subunit I (COI) gene and performed reproductive trials to assess the potential gene flow among the three populations and with other closely related B. plicatilis complex species. 3. We confirmed that the rotifer populations have phenotypic plasticity in tolerance of salinity, but only rotifers from the least saline lake are adapted to low salinity. Among the populations, sequence divergence at COI was very low (just a single haplotype was found), suggesting a persistent founder effect from a relatively recent single colonisation event and a subsequent dispersal from one lake to the others, and a very restricted immigration rate. In the phylogenetic analysis, rotifers from this area of Mexico clustered in the same clade with the middle‐sized species Brachionus ibericus and B. sp. ‘Almenara’. Mexican rotifers showed successful recognition, copulation and formation of hybrids among them, but interpopulation breeding with the Spanish B. ibericus and B. sp. ‘Almenara’ was unsuccessful. 4. We conclude that the B. plicatilis complex populations from these three lakes belong to a new biological species not yet described (presently named B. sp. ‘Mexico’). To our knowledge, this is the first report of local adaptation of a natural B. plicatilis complex population living in freshwater conditions (1.1 g L?1 TDS).  相似文献   
116.

Under changing climate, trace elements like selenium (Se) have emerged as vital constituent of agro-ecosystems enabling crop plants to off-set the adverse effects of suboptimal growth conditions. The available form of selenium is important for boosting its bioavailability to crop plants having varied agro-botanical traits and root architectural systems. As compared to selenite, the selenate has a weaker soil bonding, higher absorption in the soil solution which results in a comparatively absorption by plant roots. Various factors including dry climate, high pH, optimal ambient air temperature, less accumulation of water, and low concentration of organic matter in the soil tend to boost the selenate ratio in the soil. The use of selenium pelleted seeds has emerged as an interesting and viable alternative to alleviate selenium deficiency in agricultural eco-systems. Similarly, the co-inoculation of a mixture of Selenobacteria and Arbuscular mycorrhizal fungi represents an evolving promising strategy for the bio-fortification of wheat plants to produce selenium-rich flour to supplement human dietary needs. Furthermore, in-depth research is required to assure the effectiveness of biological fertilization procedures in field conditions as well as to explore and increase our understanding pertaining to the underlying main mechanisms and channels of selenium absorption in plants. The focus of this review is to synthesize the recent developments on Se dynamics in soil-plant systems and emerging promising strategies to optimize its levels for crop plants. Recent developments regarding the use of micro-organisms as a biotechnological mean to enhance plant nutrition and crop quality have been objectively elaborated. The study becomes even more pertinent for arid and semi-arid agro-ecosystems owing to the potential role of selenium in providing stress tolerance to crop plants. Moreover, this review synthesizes and summarizes the recent developments on climate change and bioavailability, and the protective role of selenium in crop plants.

  相似文献   
117.
Calluses able to produce somatic embryos were formed duringin vitro culture of shoot fragments of cork oak (Quercus suberL.).Histological monitoring of these fragments during cultureshowed that it was the cortical parenchyma cells which underwentdedifferentiation before calluses were formed by repeated divisions.The calluses consisted of parenchyma cells surrounded by a fewlayers of meristematic cells. Proembryos formed in groups aroundthe edge of some calluses. Histological examination showed thatthey were produced by the evolution of two different categoriesof cell: one category had the appearance of ‘embryogenic’cells with very thick walls, a small vacuole rich in starchand a well-developed nucleus with a prominent nucleolus. Theother cells were very bulky with large vacuoles; their morphologywas similar to that of suspensor cells encountered in embryogenesisin gymnosperms. The ontogenic stages were similar to those describedin zygotic embryos of the genus Quercus. Nevertheless, mostof the embryonic structures deviated from normal developmentand at all stages produced secondary proembryos. Cork-oak, Quercus suber L, histology, callogenesis, somatic embryogenesis, embryogenic cells, starch, secondary embryogenesis  相似文献   
118.
ABSTRACT. The separation of Pneumocystis carinii life-cycle stages while preserving infectivity is a hitherto unresolved challenge. We describe an original, reproducible, and efficient method for separating trophic from cystic forms of P. carinii using a high-speed cell sorter. The large amounts of highly purified (99.6±0.3%) infectious trophic and cystic forms can now be used to elucidate the poorly understood P. carinii life cycle.  相似文献   
119.
Treatment of tobacco BY‐2 cells with micromolar concentration of benzyladenosine ([9R]BA) resulted in the loss of cell viability in a time‐ and concentration‐dependent manner. Cell death induced by [9R]BA exhibited typical apoptotic hallmarks including cell shrinkage, chromatin condensation and degradation of nuclear DNA to characteristic high molecular weight (HMW) as well as nucleosomal size fragments. Externally added [9R]BA was very rapidly and almost quantitatively phosphorylated within BY‐2 cells. Accumulation of [9R]BA‐monophosphate was accompanied by massive production of endogenous reactive oxygen species (ROS), intracellular ATP depletion, and these events were followed by the loss of cell viability. Inhibition of intracellular phosphorylation of [9R]BA by adenosin kinase inhibitor, 5′‐amino‐5′‐deoxyadenosine (AdAs), diminished ROS production, ATP depletion, and consequently prevented cells from death. Selective inhibition of ROS production without restoring ATP production, however, did not provide any protection to cells. In contrast, even enhanced phosphorylation of [9R]BA caused by adenosine that simultaneously revived ATP synthesis reduced the number of dying cells. This is the first evidence of a direct relationship between intracellular phosphorylation of [9R]BA and apoptosis induction in BY‐2 cells. ATP depletion but not ROS production is the key secondary event that determines the cellular decision between life and death.  相似文献   
120.
Abstract

Partial rootzone drying (PRD) and regulated deficit irrigation (RDI) are water saving irrigation systems that have been developed to increase water use efficiency (WUE) without significant yield reduction. To examine whether tomato responded differently to RDI and PRD, we compared the changes in antioxidative defenses in tomato plants using a split-root system. Tomato plants were grown for 21 days under controlled conditions with their roots separated equally between two soil compartments. Three irrigation treatments were imposed: Control, receiving an amount of water equivalent to 100% of plant transpiration; PRD in which one compartment was watered with 50% of the amount of water supplied to the controls, allowing one-half of the root system to be exposed to dry soil, and switching irrigation between sides weekly; RDI in which 50% of the amount of water given to the controls was supplied, half to each side of the root system. Relative water content (RWC), midday leaf Ψ and chlorophyll content decreased largely in RDI-treated plants, whereas the PRD plants exhibited relatively higher Ψ and RWC values. An enhanced level of lipid peroxidation in both roots and leaves indicated that PRD and RDI caused oxidative stress in tomato plants. In leaves, superoxide dismutase (SOD), soluble peroxidase (POX) and polyphenol oxidase (PPO) activities showed an increase in the early phase of water deficit, and then decreased in the remaining phase of the drying cycle. However, the increase was more pronounced under RDI. Catalase (CAT) activity declined continuously from the onset of PRD and RDI treatments to below the control level, and the reduction was less under PRD than RDI. POX cell-wall associated activities exceeded the control level by 450% and 230%, respectively, under RDI and PRD. At the root level, while CAT activity also decreased under both PRD and RDI, the activities of SOD, POX and PPO significantly increased and their activities showed an alternating increase/decrease paralleling the alternating irrigation in PRD-treated roots. As a result of the difference in POX and PPO activities between the two water treatments applied, PRD-treated plants accumulated more soluble and cell-wall bound phenolic compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号