首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6290篇
  免费   554篇
  国内免费   14篇
  6858篇
  2024年   7篇
  2023年   65篇
  2022年   128篇
  2021年   220篇
  2020年   99篇
  2019年   161篇
  2018年   178篇
  2017年   173篇
  2016年   224篇
  2015年   326篇
  2014年   321篇
  2013年   415篇
  2012年   505篇
  2011年   458篇
  2010年   291篇
  2009年   224篇
  2008年   323篇
  2007年   326篇
  2006年   278篇
  2005年   272篇
  2004年   205篇
  2003年   183篇
  2002年   221篇
  2001年   147篇
  2000年   190篇
  1999年   129篇
  1998年   50篇
  1997年   28篇
  1996年   33篇
  1995年   46篇
  1994年   34篇
  1993年   32篇
  1992年   70篇
  1991年   58篇
  1990年   58篇
  1989年   59篇
  1988年   44篇
  1987年   34篇
  1986年   41篇
  1985年   45篇
  1984年   25篇
  1983年   21篇
  1982年   13篇
  1981年   16篇
  1980年   8篇
  1979年   15篇
  1978年   12篇
  1977年   12篇
  1976年   7篇
  1972年   6篇
排序方式: 共有6858条查询结果,搜索用时 15 毫秒
91.
92.
The relationship between the severity of dengue infection and allergy is still obscure. We conducted an electronic search across 12 databases for relevant articles reporting allergic symptoms, dengue infection, and dengue classification. These studies were categorized according to dengue severity and allergy symptoms, and a meta-analysis was performed by pooling the studies in each category. Among the included 57 articles, pruritus was the most common allergic sign followed by non-specified allergy and asthma(28.6%, 13%, and 6.5%, respectively). Despite the reported significant association of dengue with pruritus and total Ig E level(P \ 0.05), in comparison with non-dengue cases and healthy controls, there was no association between the different severe dengue group with pruritus, skin allergy, food allergy or asthma. However,removing the largest study revealed a significant association between asthma with dengue hemorrhagic fever(DHF) rather than dengue fever(DF). In comparison with DF, DHF was associated with Ig E positivity. Furthermore, specific-Ig E level was higher in secondary DF rather than primary DF. There was a possible association between allergy symptoms and dengue severity progression. Further studies are needed to clarify this association.  相似文献   
93.
Chemotherapy has been widely used as a clinical treatment for cancer over the years. However, its effectiveness is limited because of resistance of cancer cells to programmed cell death (PCD) after treatment with anticancer drugs. To elucidate the resistance mechanism, we initially focused on cancer cell-specific mitophagy, an autophagic degradation of damaged mitochondria. This is because mitophagy has been reported to provide cancer cells with high resistance to anticancer drugs. Our data showed that TRIP-Br1 oncoprotein level was greatly increased in the mitochondria of breast cancer cells after treatment with various anticancer drugs including staurosporine (STS), the main focus of this study. STS treatment increased cellular ROS generation in cancer cells, which triggered mitochondrial translocation of TRIP-Br1 from the cytosol via dephosphorylation of TRIP-Br1 by protein phosphatase 2A (PP2A). Up-regulated mitochondrial TRIP-Br1 suppressed cellular ROS levels. In addition, TRIP-Br1 rapidly removed STS-mediated damaged mitochondria by activating mitophagy. It eventually suppressed STS-mediated PCD via degradation of VDACI, TOMM20, and TIMM23 mitochondrial membrane proteins. TRIP-Br1 enhanced mitophagy by increasing expression levels of two crucial lysosomal proteases, cathepsins B and D. In conclusion, TRIP-Br1 can suppress the sensitivity of breast cancer cells to anticancer drugs by activating autophagy/mitophagy, eventually promoting cancer cell survival.  相似文献   
94.
Summary The platelet GPIIb-IIIa complex functions as a receptor for fibrinogen, fibronectin, and von Willebrand factor on activated platelets. This glycoprotein is a member of a broadly distributed family of structurally and immunologically related membrane receptors involved in cell-cell contact and cell-matrices interactions. GPIIb-IIIa is a heterodimer complex composed of GPIIb (the subunit), which consists of two disulfide-linked heavy and light chains, and GPIIIa (the subunit), which is a single polypeptide chain. Congenital absence of platelet GPIIb-IIIa in Glanzmann's thrombasthenia results in a severe bleeding disorder characterized by defective platelet aggregation and failure of fibrinogen to bind to platelets. The gene coding for GPIIb was located on 17q21.1-17q21.3 as determined by in situ hybridization with a 2650-pb GP2B (GPIIb) cDNA probe prepared from human megakaryocytes.  相似文献   
95.
Type 2 diabetes is a serious, genetically influenced disease for which no fully effective treatments are available. Identification of biochemical or regulatory pathways involved in the disease syndrome could lead to innovative therapeutic interventions. One way to identify such pathways is the genetic analysis of families with multiple affected members where disease predisposing genes are likely to be segregating. We undertook a genomewide screen (389-395 microsatellite markers) in samples of 835 white, 591 Mexican American, 229 black, and 128 Japanese American individuals collected as part of the American Diabetes Association's GENNID study. Multipoint nonparametric linkage analyses were performed with diabetes, and diabetes or impaired glucose homeostasis (IH). Linkage to diabetes or IH was detected near markers D5S1404 (map position 77 cM, LOD = 2.80), D12S853 (map position 82 cM, LOD = 2.81) and GATA172D05 (X-chromosome map position 130 cM, LOD = 2.99) in whites, near marker D3S2432 (map position 51 cM, LOD = 3.91) in Mexican Americans, and near marker D10S1412 (map position 14 cM, LOD = 2.39) in African Americans mainly collected in phase 1 of the study. Further analyses showed evidence for interactions between the chromosome 5 locus and region on chromosome 12 containing the MODY 3 gene (map position 132 cM) and between the X-chromosome locus and region near D12S853 (map position 82 cM) in whites. Although these results were not replicated in samples collected in phase 2 of the GENNID study, the region on chromosome 12 was replicated in samples from whites described by Bektas et al. (1999).  相似文献   
96.
Exploring the link between above‐ and belowground biodiversity has been a major theme of recent ecological research, due in large part to the increasingly well‐recognized role that soil microorganisms play in driving plant community processes. In this study, we utilized a field‐based tree experiment in Minnesota, USA, to assess the effect of changes in plant species richness and phylogenetic diversity on the richness and composition of both ectomycorrhizal and saprotrophic fungal communities. We found that ectomycorrhizal fungal species richness was significantly positively influenced by increasing plant phylogenetic diversity, while saprotrophic fungal species richness was significantly affected by plant leaf nitrogen content, specific root length and standing biomass. The increasing ectomycorrhizal fungal richness associated with increasing plant phylogenetic diversity was driven by the combined presence of ectomycorrhizal fungal specialists in plots with both gymnosperm and angiosperm hosts. Although the species composition of both the ectomycorrhizal and saprotrophic fungal communities changed significantly in response to changes in plant species composition, the effect was much greater for ectomycorrhizal fungi. In addition, ectomycorrhizal but not saprotrophic fungal species composition was significantly influenced by both plant phylum (angiosperm, gymnosperm, both) and origin (Europe, America, both). The phylum effect was caused by differences in ectomycorrhizal fungal community composition, while the origin effect was attributable to differences in community heterogeneity. Taken together, this study emphasizes that plant‐associated effects on soil fungal communities are largely guild‐specific and provides a mechanistic basis for the positive link between plant phylogenetic diversity and ectomycorrhizal fungal richness.  相似文献   
97.
Exercise is an effective approach for primary and secondary prevention of cardiovascular diseases (CVD) and loss of muscular mass and function. Its benefits are widely documented but incompletely characterized. It has been reported that exercise can induce changes in the expression of antioxidant enzymes including Sod2, Trx1, Prdx3 and Gpx1 and limits the rise in oxidative stress commonly associated with CVD. These enzymes can be subjected to epigenetic regulation, such as DNA methylation, in response to environmental cues. The aim of our study was to determine whether in the early stages of atherogenesis, in young severely dyslipidemic mice lacking LDL receptors and overexpressing human ApoB100 (LDLR-/-; hApoB+/+), exercise regulates differentially the expression of antioxidant enzymes by DNA methylation in the skeletal muscles that consume high levels of oxygen and thus generate high levels of reactive oxygen species. Expression of Sod2, Txr1, Prdx3 and Gpx1 was altered by 3 months of exercise and/or severe dyslipidemia in 6-mo dyslipidemic mice. Of these genes, only Gpx1 exhibited changes in DNA methylation associated with dyslipidemia and exercise: we observed both increased DNA methylation with dyslipidemia and a transient decrease in DNA methylation with exercise. These epigenetic alterations are found in the second exon of the Gpx1 gene and occur alongside with inverse changes in mRNA expression. Inhibition of expression by methylation of this specific locus was confirmed in vitro. In conclusion, Gpx1 expression in the mouse skeletal muscle can be altered by both exercise and dyslipidemia through changes in DNA methylation, leading to a fine regulation of free radical metabolism.  相似文献   
98.
Numerous cell types retrovirally transduced with macrophage colony-stimulating factor (M-CSF) using LXSN-based vectors showed a variable expression of the transgene. Expression of M-CSF correlated with the cells' adherent status. Transduced adherent cells produced the M-CSF, whereas the non-adherent cells synthesized little M-CSF. Studies showed that the 5'-UTR of the M-CSF gene regulated transgenic M-CSF gene expression. Ligation of this 5'-UTR to the enhanced green fluorescent protein gene (EGFP) caused the expression of EGFP to show the same dichotomy as previously seen with the M-CSF. Transgenic M-CSF was expressed within non-adherent cells when the 5'-UTR was removed from the LXSN vector. Quantitative real-time polymerase chain reaction analysis confirmed that lesser production of M-CSF mRNA occurred within the non-adherent cells than in the adherent cells. This difference was eliminated when the 5'-UTR was removed from the retroviral vector. Our work suggests that this 5'-UTR of the M-CSF gene could be an important way to get transgenic expression within adherent cells, but not in non-adherent cells.  相似文献   
99.
100.
Mutation and recombination are the primary sources of genetic variation. To better understand the evolution of genetic variation, it is crucial to comprehensively investigate the processes involving mutation accumulation and recombination. In this study, we performed mutation accumulation experiments on four heterozygous diploid yeast species in the Saccharomycodaceae family to determine spontaneous mutation rates, mutation spectra, and losses of heterozygosity (LOH). We observed substantial variation in mutation rates and mutation spectra. We also observed high LOH rates (1.65–11.07×10−6 events per heterozygous site per cell division). Biases in spontaneous mutation and LOH together with selection ultimately shape the variable genome-wide nucleotide landscape in yeast species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号