首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   405篇
  免费   47篇
  国内免费   2篇
  2022年   2篇
  2021年   7篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   13篇
  2014年   19篇
  2013年   14篇
  2012年   18篇
  2011年   32篇
  2010年   13篇
  2009年   14篇
  2008年   8篇
  2007年   15篇
  2006年   23篇
  2005年   9篇
  2004年   22篇
  2003年   18篇
  2002年   18篇
  2001年   23篇
  2000年   21篇
  1999年   10篇
  1998年   10篇
  1997年   7篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1992年   12篇
  1991年   7篇
  1990年   9篇
  1989年   9篇
  1988年   11篇
  1987年   10篇
  1986年   5篇
  1985年   3篇
  1984年   2篇
  1983年   5篇
  1982年   2篇
  1981年   6篇
  1979年   3篇
  1976年   3篇
  1975年   2篇
  1972年   3篇
  1970年   3篇
  1969年   3篇
  1968年   2篇
  1953年   1篇
排序方式: 共有454条查询结果,搜索用时 46 毫秒
41.
Although it is well accepted that bone tissue metabolism is regulated by external mechanical loads, it remains unclear to what load-induced physical signals bone cells respond. In this study, a novel computer-controlled stretch device and parallel plate flow chamber were employed to investigate cytosolic calcium (Ca2+i) mobilization in response to a range of dynamic substrate strain levels (0.1-10 percent, 1 Hz) and oscillating fluid flow (2 N/m2, 1 Hz). In addition, we quantified the effect of dynamic substrate strain and oscillating fluid flow on the expression of mRNA for the bone matrix protein osteopontin (OPN). Our data demonstrate that continuum strain levels observed for routine physical activities (< 0.5 percent) do not induce Ca2+i responses in osteoblastic cells in vitro. However, there was a significant increase in the number of responding cells at larger strain levels. Moreover, we found no change in osteopontin mRNA level in response to 0.5 percent strain at 1 Hz. In contrast, oscillating fluid flow predicted to occur in the lacunar-canalicular system due to routine physical activities (2 N/m2, 1 Hz) caused significant increases in both Ca2+i and OPN mRNA. These data suggest that, relative to fluid flow, substrate deformation may play less of a role in bone cell mechanotransduction associated with bone adaptation to routine loads.  相似文献   
42.
43.

Background  

The present study aimed to evaluate the efficacy of the hyaluronic acid (HA) binding assay in the selection of motile spermatozoa with normal morphology at high magnification (8400x).  相似文献   
44.
V(D)J recombination of immunoglobulin loci is dependent on the immune cell-specific Rag1 and Rag2 proteins as well as a number of ubiquitously expressed cellular DNA repair proteins that catalyze non-homologous end-joining of DNA double-strand breaks. The evolutionarily conserved Rad50/Mre11/Nibrin protein complex has a role in DNA double-strand break-repair, suggesting that these proteins, too, may participate in V(D)J recombination. Recent findings demonstrating that Rad50 function is defective in cells from patients afflicted with Fanconi anemia provide a possible mechanistic explanation for previous findings that lymphoblasts derived from these patients exhibit subtle defects in V(D)J recombination of extrachromosomal plasmid molecules. Here, we describe a series of findings that provide convincing evidence for a role of the Rad50 protein complex in V(D)J recombination. We found that the fidelity of V(D)J signal joint recombination in fibroblasts from patients afflicted with Fanconi anemia was reduced by nearly tenfold, compared to that observed in fibroblasts from normal donors. Second, we observed that antibody-mediated inhibition of the Rad50, Mre11, or Nibrin proteins reduced the fidelity of signal joint recombination significantly in wild-type cells. The latter finding was somewhat unexpected, because signal joint rejoining in cells from patients with Nijmegen breakage syndrome, which results from mutations in the Nibrin gene, occurs with normal fidelity. However, introduction of anti-Nibrin antibodies into these cells reduced the fidelity of signal joint recombination dramatically. These data reveal for the first time a role for the Rad50 complex in V(D)J recombination, and demonstrate that the protein product of the disease-causing allele responsible for Nijmegen breakage syndrome encodes a protein with residual DNA double-strand break repair activity.  相似文献   
45.
Peroxidation reactions of copper-zinc superoxide dismutase (CuZn-SOD1) or its zinc-depleted form (CuE-SOD1) that likely also involve a component of bicarbonate buffer have been implicated in the pathophysiology of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS), Alzheimer's Disease and Parkinson's Disease. Neither removal of the zinc ion nor adding bicarbonate had large effects on the self-peroxidation reaction of bovine SOD1, but the combination of zinc-deficiency and added bicarbonate caused major changes to the spin trapped SOD1-centred free radical. Removal of the active site zinc ion greatly decreased the formation of an unassigned SOD1-centred free radical in the reaction with the inorganic peroxide peroxynitrite. The results suggest that under cellular conditions ( approximately 5 mM bicarbonate) zinc-deficient SOD1 peroxidation could play a pathogenic role in neurodegenerative diseases.  相似文献   
46.
The present study used isobaric tags for relative and absolute quantitation (iTRAQ) to identify novel targets in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. The expression of 41 proteins was significantly altered in the inflamed spinal cord. Twenty of these are implicated in EAE for the first time and many have previously been shown to play a role in antigen processing, inflammation, neuroprotection, or neurodegeneration.  相似文献   
47.
Photosynthetic response to high light was determined for Bull kelp, Nereocystis luetkeana (K. Mertens) Postels and Ruprecht in order to understand how this species is affected by short‐term fluctuations in irradiance. Exposure of N. luetkeana blades to high intensity photosynthetically active radiation (1000 µmol photons m?2 s–1) caused increased non‐photochemical quenching of fluorescence and higher de‐epoxidation ratios for xanthophyll pigments indicating that energy‐quenching xanthophylls were used to protect blades against photoinhibition. Despite initiation of these photoprotective mechanisms, maximum photochemical efficiency of photosystem II (Fv/Fm) decreased 40% in response to a 60 min exposure to 1000 µmol photons m?2 s–1 photosynthetically active radiation indicating that photoinhibition had occurred. Light‐saturated rates of oxygen evolution were not changed significantly by the high light treatment. Recovery of maximum photochemical efficiency of photosystem II to within 8% of initial values occurred after a 300‐min dim light period. Younger sections of the blades were slightly more susceptible to high light damage than older sections. Middle sections of the blades were more prone to light‐induced damage at water temperatures of 7°C or 18°C, as compared to 13°C. Exposure to biologically effective ultraviolet‐B radiation (UV‐Bbe) (up to 4.5 kJ m–2 day–1) in photoinhibitory light conditions did not significantly affect light‐induced damage to photosystem II.  相似文献   
48.
We report the development and optimization of reagents for in-solution, hybridization-based capture of the mouse exome. By validating this approach in a multiple inbred strains and in novel mutant strains, we show that whole exome sequencing is a robust approach for discovery of putative mutations, irrespective of strain background. We found strong candidate mutations for the majority of mutant exomes sequenced, including new models of orofacial clefting, urogenital dysmorphology, kyphosis and autoimmune hepatitis.  相似文献   
49.

Background

Postoperative ventricular dysfunction (VnD) occurs in 9–20% of coronary artery bypass graft (CABG) surgical patients and is associated with increased postoperative morbidity and mortality. Understanding genetic causes of postoperative VnD should enhance patient risk stratification and improve treatment and prevention strategies. We aimed to determine if genetic variants associate with occurrence of in-hospital VnD after CABG surgery.

Methods

A genome-wide association study identified single nucleotide polymorphisms (SNPs) associated with postoperative VnD in male subjects of European ancestry undergoing isolated primary CABG surgery with cardiopulmonary bypass. VnD was defined as the need for ≥2 inotropes or mechanical ventricular support after CABG surgery. Validated SNPs were assessed further in two replication CABG cohorts and meta-analysis was performed.

Results

Over 100 SNPs were associated with VnD (P<10−4), with one SNP (rs17691914) encoded at 3p22.3 reaching genome-wide significance (Padditive model = 2.14×10−8). Meta-analysis of validation and replication study data for 17 SNPs identified three SNPs associated with increased risk for developing postoperative VnD after adjusting for clinical risk factors. These SNPs are located at 3p22.3 (rs17691914, ORadditive model = 2.01, P = 0.0002), 3p14.2 (rs17061085, ORadditive model = 1.70, P = 0.0001) and 11q23.2 (rs12279572, ORrecessive model = 2.19, P = 0.001).

Conclusions

No SNPs were consistently associated with strong risk (ORadditive model>2.1) of developing in-hospital VnD after CABG surgery. However, three genetic loci identified by meta-analysis were more modestly associated with development of postoperative VnD. Studies of larger cohorts to assess these loci as well as to define other genetic mechanisms and related biology that link genetic variants to postoperative ventricular dysfunction are warranted.  相似文献   
50.
Among its many roles, the HIV-1 accessory protein Vpu performs a viroporin function and also antagonizes the host cell restriction factor tetherin through its transmembrane domain. BIT225 is a small molecule inhibitor that specifically targets the Vpu viroporin function, which, in macrophages, resulted in late stage inhibition of virus release and decreased infectivity of released virus, a phenotype similar to tetherin-mediated restriction. Here, we investigated whether BIT225 might mediate its antiviral function, at least in part, via inhibition of Vpu-mediated tetherin antagonism. Using T-cell lines inducible for tetherin expression, we found that BIT225 does not exert its antiviral function by inhibiting Vpu-mediated tetherin downmodulation from the cell surface, the main site of action of tetherin activity. In addition, results from a bioluminescence resonance energy transfer (BRET) assay showed that the Vpu-tetherin interaction was not affected by BIT225. Our data provide support for the concept that tetherin antagonism and viroporin function are separable on the Vpu transmembrane and that viroporin function might be cell-type dependent. Further, this work contributes to the characterization of BIT225 as an inhibitor that specifically targets the viroporin function of Vpu.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号