首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204篇
  免费   1篇
  205篇
  2019年   1篇
  2017年   1篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   8篇
  2009年   13篇
  2008年   9篇
  2007年   9篇
  2006年   17篇
  2005年   5篇
  2004年   3篇
  2003年   9篇
  2002年   3篇
  2001年   5篇
  2000年   2篇
  1999年   6篇
  1998年   7篇
  1997年   9篇
  1996年   10篇
  1995年   5篇
  1994年   5篇
  1993年   9篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   6篇
  1988年   2篇
  1986年   3篇
  1985年   5篇
  1984年   1篇
  1983年   2篇
  1981年   5篇
  1980年   4篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1975年   2篇
  1973年   1篇
  1972年   3篇
  1971年   2篇
  1969年   4篇
  1965年   1篇
  1962年   2篇
  1957年   2篇
  1956年   1篇
  1935年   1篇
  1928年   1篇
  1917年   2篇
排序方式: 共有205条查询结果,搜索用时 9 毫秒
31.
SUMMARY. 1. The overlying water of intact sediment cores was constantly stirred with an impeller at a rate sufficient to mix turbulently the water column and maintain the diffusive boundary layer at a determined thickness. The system allowed standardization of water circulation in laboratory sediment core experiments.
2. Both oxygen concentration and oxygen penetration depth in the sediments decreased, the former by 70% and the latter from 4.2 mm to 2.0 mm, when the overlying water was not stirred for 24 h, as measured with oxygen microelectrodes in a lake sediment core.
3. Oxygen profiles measured in sediment cores in the laboratory were similar to those measured in situ when the overlying water was stirred with an impeller at such a rate that a similar thickness of the diffusive boundary layer at the sediment-water interface developed in the laboratory as that in situ.
4. Sediment oxygen consumption was calculated from: (1) measured oxygen profiles in the diffusive boundary layer and the molecular diffusion coefficient for oxygen in water; (2) the measured oxygen decrease in the top of the sediments and the estimated diffusion coefficient in the sediment; and (3) by oxygen differences in the overlying water after incubation of sediment cores.  相似文献   
32.
33.
Twenty novel polymorphic microsatellite loci were isolated and characterized from the Indri, Indri indri, genome. Along with sequence data, this marker suite will be used in future studies to establish population structure throughout its range and to verify the proposed subspecific nomenclature. Gene diversity (0.760 and 0.783) and allelic richness (5.8 and 6.43) were estimated in the Betampona and Andasibe populations, respectively.  相似文献   
34.
On the basis of floral and vegetative morphology, 63 tropical American genera have been recognized within Maxillarieae. We were able to examine anatomical material of all subtribes, excluding Oncidiinae. Stegmata with conical silica bodies occur in leaves and stems of all subtribes excluding Ornithocephalinae, and pericyclic stegmata found in roots are characteristic of Lycastinae. Lycastinae and Maxillariinae are characterized by foliar glands, foliar fibre bundles and tilosomes. Endodermal cells are U-thickened in most Zygopetalinae; O-thickened in most Lycastinae, Ornithocephalinae and Telipogoninae; variously thickened in Maxillariinae; and thin-walled in Cryptarrhena lunata . Water-storage cells varied from thin-walled to variously banded throughout Maxillarieae. Cladistic analyses using anatomical characters yielded no resolution among subtribes, illustrating that anatomical characters are of limited value in assessing relationships within this tribe.  © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society , 2004, 144 , 251–274.  相似文献   
35.
36.
JUDD, W. S., STERN, W. L. & CHEADLE, V. I. 1993. Phylogenetic position of Apostasia and Neuwiedia (Orchidaceae). Cladistic analyses of the phylogenetic relationships of selected orchid taxa were conducted in order to assess the phylogenetic position of Apostasia and Neuwiedia (Orchidaceae: Apostasioideae). These analyses employed newly available anatomical characters, along with several morphological features that had been used in recent phylogenetic analyses of Orchidaceae. Our analyses indicate that Apostasia is more closely related to Neuwiedia than it is to Cypripedioideae. The two genera comprise an apostasiad clade; this clade is the sister-group to a clade including Cypripedioideae and monandrous orchids. The apostasiad clade is diagnosed by the derived features of operculate pollen colpi, Apostasia-type seeds, and vessel members with simple perforation plates. Of these, the presence of simple perforation plates is considered to be the most significant phylogenetically. Therefore, the apostasiads should not be considered ancestral to the remaining orchid groups. Vessel members of the monandrous orchids, as well as the cypripediads, are multiperforate–the hypothesized ancestral state based on the condition in Hypoxidaceae.  相似文献   
37.
38.
Using data obtained through anatomy and morphology, we used cladistics to examine the monophyly of Senghas's proposed classification of Maxillaria cushion plants and his placement of Mormolyca ringens. Trignidium obtusum was chosen as the outgroup. Leaves have multicellular hairs sunken in crypts, primarily anomocytic or primarily tetracytic stomatal apparatuses, homogeneous mesophyll, and scattered fibre bundles. Three types of adaxial hypodermis were observed: (1) water-storage cells, (2) fibre bundles scattered among water-storage cells, and (3) fibre bundles scattered among chlorenchymatous cells. Abaxial hypodermis of fibre bundles occurs in several Maxillaria species and in Trigonidium obtusum. At the midvein of the leaf, adaxial mesophyll cells of most species are anticlinally extended and empty, and the abaxial mesophyll is usually collenchymatous. Vascular bundles are collateral and usually in a single series. Pseudobulb epidermal cell walls are thin, or outer walls are thickened. Ground tissue consists of water-storage and assimilatory cells with vascular bundles and associated lacunae scattered throughout. Roots are velamentous and exodermal cell walls are usually n-thickened with tenuous bands of scalarifom thickenings on longitudinal walls. Tilosomes may be plaited, baculate, or spongy. Endodermal cell walls are usually U-thickened and pericycle cell walls are usually O-thickened opposite phloem sectors. Stegmata line the periphery of the thickened pericycle cells opposite phloem sectors in M. picta. Pith may be parenchymatous or sclerenchymatous. According to our phylogenetic analysis, Mormolyca ringens is consistently nested within the cladistic structure of Maxillaria. Therefore, Maxillaria likely is paraphyletic if Mormolyca ringens is recognized as generically distinct. It appears that Senghas's subgroup divisions of the unifoliate pseudobulbous maxillarias may also be artificial.  相似文献   
39.
After the spider, Zygiella x-notata Cl. has been enticed toleave the retreat and catch a fly in a web turned upside-down,it takes a relatively long time to return to the retreat. Thereturn-time is divided into periods of active searching andmotionlessness. Several factors have been found to shorten significantlythe searching and motionless time; among them are youth of theanimals, small number of webs previously built, the positionof the web before and between experiments, and repetition oftrials at certain time intervals. The observed phenomenon andvariations in time are explained in terms of current conceptsof memory function and information processing.  相似文献   
40.
The functional morphology of shell infrastructure in 2 speciesof intertidal trochid was compared with that in 2 species ofnerite. The shell of Monodonta constrictais typical of the majorityof trochids. The shell is composed of 4 layers: a distal layer(calcite), anouter prismatic layer (aragonite), a nacreous layer(aragonite), and an oblique prismatic layer (aragonite). Monodontalabio lacks a distal layer and an oblique prismatic layer. Theoblique prismatic layer is replaced by an inner prismatic layerwhich forms an apertural ridge as a result of deposition andresorption. The shells of Nerita versicolor and N. tessellataconsistof 3 layers: an outer prismatic layer (calcite), a crossedlamellar layer (aragonite), and a complex crossed lamellar layer(aragonite). The complex crossed lamellar layer is covered withinclined platelets which superficially resemble the surfaceof the ique prismatic layer of trochids. In addition, the complexcrossed lamellar layer forms an apertural ridge which is similarin appearance to that of Monodonta labio. The outer surfaceof the mantle of Nerita versicolor and N. tessellata is throwninto a series of large folds which lie in contact with the inclinedplatelets of the omplex crossed lamellar layer. The interactionof the mantle folds with the inclined platelets is thought toserve as a rachet mechanism to aid in extension of themantle;a similar function has previously been proposed for trochids.The apertural ridges of Monodonta labio and Nerita are thoughtto prevent excessive desiccation when these gastropodsare exposedat low tide. 1Contribution No. 56 of the Tallahassee, Sopchoppy & GulfCoast Marine Biological Association (Received 6 July 1979;  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号