首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   591篇
  免费   63篇
  国内免费   4篇
  2023年   10篇
  2022年   14篇
  2021年   24篇
  2020年   14篇
  2019年   17篇
  2018年   17篇
  2017年   18篇
  2016年   27篇
  2015年   47篇
  2014年   39篇
  2013年   52篇
  2012年   42篇
  2011年   56篇
  2010年   33篇
  2009年   29篇
  2008年   11篇
  2007年   32篇
  2006年   24篇
  2005年   13篇
  2004年   12篇
  2003年   16篇
  2002年   15篇
  2001年   15篇
  2000年   15篇
  1999年   13篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1994年   1篇
  1993年   3篇
  1992年   6篇
  1991年   6篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有658条查询结果,搜索用时 15 毫秒
81.
82.
Flaviviruses are a group of single-stranded, positive-sense RNA viruses causing ∼100 million infections per year. We have recently shown that flaviviruses produce a unique, small, noncoding RNA (∼0.5 kb) derived from the 3′ untranslated region (UTR) of the genomic RNA (gRNA), which is required for flavivirus-induced cytopathicity and pathogenicity (G. P. Pijlman et al., Cell Host Microbe, 4: 579-591, 2008). This RNA (subgenomic flavivirus RNA [sfRNA]) is a product of incomplete degradation of gRNA presumably by the cellular 5′-3′ exoribonuclease XRN1, which stalls on the rigid secondary structure stem-loop II (SL-II) located at the beginning of the 3′ UTR. Mutations or deletions of various secondary structures in the 3′ UTR resulted in the loss of full-length sfRNA (sfRNA1) and production of smaller and less abundant sfRNAs (sfRNA2 and sfRNA3). Here, we investigated in detail the importance of West Nile virus Kunjin (WNVKUN) 3′ UTR secondary structures as well as tertiary interactions for sfRNA formation. We show that secondary structures SL-IV and dumbbell 1 (DB1) downstream of SL-II are able to prevent further degradation of gRNA when the SL-II structure is deleted, leading to production of sfRNA2 and sfRNA3, respectively. We also show that a number of pseudoknot (PK) interactions, in particular PK1 stabilizing SL-II and PK3 stabilizing DB1, are required for protection of gRNA from nuclease degradation and production of sfRNA. Our results show that PK interactions play a vital role in the production of nuclease-resistant sfRNA, which is essential for viral cytopathicity in cells and pathogenicity in mice.Arthropod-borne flaviviruses such as West Nile virus (WNV), dengue virus (DENV), and Japanese encephalitis virus (JEV) cause major outbreaks of potentially fatal disease and affect over 50 million people every year. The highly pathogenic North American strain of WNV (WNVNY99) has already claimed more than 1,000 lives with over 27,000 cases reported since its emergence in New York in 1999 and has raised global public health concerns (9). In contrast, the closely related Australian strain of WNV, WNVKUN, is highly attenuated and does not cause overt disease in humans and animals (11). WNVKUN has been used extensively as a model virus to study flavivirus replication and flavivirus-host interactions (13, 14, 16-19, 26, 38, 39).The ∼11-kb positive-stranded, capped WNV genomic RNA (gRNA) lacks a poly(A) tail and consists of 5′ and 3′ untranslated regions (UTRs) flanking one open reading frame, which encodes the viral proteins required for the viral life cycle (6, 15, 38, 39). Flavivirus UTRs are involved in translation and initiation of RNA replication and likely determine genome packaging (13, 14, 16, 21, 30, 39-41). Both the 5′ UTR (∼100 nucleotides [nt] in size) and the 3′ UTR (from ∼400 to 700 nucleotides) can form secondary and tertiary structures which are highly conserved among mosquito-borne flaviviruses (1, 8, 10, 14, 29, 32, 34). More specifically, the WNVKUN 3′ UTR consists of several conserved regions and secondary structures (Fig. (Fig.1A)1A) which were previously predicted or shown to exist in various flaviviruses by computational and chemical analyses, respectively (4, 10, 25, 26, 29-32). The 5′ end of the 3′ UTR starts with an AU-rich region which can form stem-loop structure I (SL-I) followed by SL-II, which we previously showed to be vitally important for subgenomic flavivirus RNA (sfRNA) production (26; see also below). SL-II is followed by a short, repeated conserved hairpin (RCS3) and SL-III (26). Further downstream of SL-III are the SL-IV and CS3 structures, which are remarkably similar to the preceding SL-II-RCS3 structure (26, 29). Further downstream of the SL-IV-CS3 structure are dumbbells 1 and 2 (DB1 and DB2, respectively) followed by a short SL and the 3′ SL (25, 26).Open in a separate windowFIG. 1.(A) Model of the WNVKUN 3′ UTR RNA structure. Highlighted in bold are the secondary structures investigated here. Dashed lines indicate putative PKs. The two sites of the putative PK interactions are shown in open boxes. sfRNA1, -2, -3, and -4 start sites are indicated by arrows. (R)CS, (repeated) conserved sequence; DB, dumbbell structure; PK, pseudoknot; SL, stem-loop. (B) Structural model of PK1 in SL-II with disruptive mutations. Nucleotide numbering is from the end of the 3′ UTR. The sfRNA1 start is indicated by an arrow. Nucleotides forming PK1 are on a gray background, and mutated nucleotides are white on a black background. (C) Sequences mutated in the different constructs. Nucleotides in the wt PK sequences used for mutations are bold and underlined. Introduced mutations are shown under the corresponding nucleotides in the wt sequence.The described structures have been investigated in some detail for their requirement in RNA replication and translation. Generally, a progressive negative effect on viral growth was shown with progressive deletions into the 3′-proximal region of the JEV 3′ UTR (41). However, only a relatively short region of the JEV 3′ UTR, consisting of the 3′-terminal 193 nt, was shown to be absolutely essential for gRNA replication (41). The minimal region for DENV replication was reported to be even shorter (23). Extensive analysis has shown that the most 3′-terminal, essential regions of the 3′ UTR include the cyclization sequence and 3′ SL, which are required for efficient RNA replication (2, 14, 16, 23, 35). As we showed, deletion of SL-II or SL-I did not overtly affect WNVKUN replication (26). However, deletion of CS2, RCS2, CS3, or RCS3 in WNV replicon RNA significantly reduced RNA replication but not translation (20), indicating that these elements facilitate but are not essential for RNA replication. In addition, it was shown that deletion of DB1 or DB2 resulted in a viable mutant virus that was reduced in growth efficiency, while deletion of both DB structures resulted in a nonviable mutant (23).In addition to the above-mentioned secondary stem-loop structures, computational and chemical analysis of the flavivirus 3′ UTR suggested the presence of 5 pseudoknot (PK) interactions (Fig. (Fig.1A)1A) (25, 26, 32). A PK is a structure formed upon base pairing of a single-stranded region of RNA in the loop of a hairpin to a stretch of complementary nucleotides elsewhere in the RNA chain (Fig. (Fig.1B).1B). These structures are referred to as hairpin type (H-type) PKs (3), and they usually stabilize secondary RNA structures. Typically, the final tertiary structure does not significantly alter the preformed secondary structure (5). In general, PK interactions have been shown to be important in biological processes such as initiation and/or elongation of translation, initiation of gRNA replication, and ribosomal frameshifting for a number of different viruses, including flaviviruses (reviewed in references 3 and 22). The first PK in the WNV 3′ UTR was predicted to form in SL-II, followed by a similar PK in SL-IV (26) (PK1 and PK2 in Fig. Fig.1A).1A). For the DENV, yellow fever virus (YFV), and JEV subgroup of flaviviruses, two PKs further downstream were predicted to form between DB1 and DB2 and corresponding single-stranded RNA regions located further downstream (25) (PK3 and PK4 in Fig. Fig.1A).1A). The formation of these structures is supported by covariations in the WNV RNAs. In addition, a PK was proposed to form between a short SL and the 3′ SL at the 3′ terminus of the viral genome (32) (PK5 in Fig. Fig.1A1A).Importantly, in addition to its role in viral replication and translation, we have shown that the WNVKUN 3′ UTR is important for the production of a small noncoding RNA fragment designated sfRNA (26). This short RNA fragment of ∼0.5 kb is derived from the 3′ UTR of the gRNA and exclusively produced by the members of the Flavivirus genus of the Flaviviridae family, where it is required for efficient viral replication, cytopathicity, and pathogenicity (26). Our studies suggested that sfRNA is a product of incomplete degradation of the gRNA presumably by the cellular 5′-3′ exoribonuclease XRN1, resulting from XRN1 stalling on the rigid secondary/tertiary structures located at the beginning of the 3′ UTR (26). XRN1 is an exoribonuclease which usually degrades mRNA from the 5′ to the 3′ end as part of cellular mRNA decay and turnover (33), and it was shown previously that XRN1 can be stalled by SL structures (28). Mutations or deletions of WNV 3′ UTR secondary structures resulted in the loss of full-length sfRNA (sfRNA1) and production of smaller and less abundant sfRNAs (sfRNA2 and sfRNA3) (26). In particular, SL-II (Fig. (Fig.1A)1A) was shown to be important for sfRNA1 production; deletion of this structure either alone or in conjunction with other structures located downstream of SL-II abolished sfRNA1 production, leading to the production of the smaller RNA fragments sfRNA2 and sfRNA3.Here, we extended our investigation and studied the importance of several predicted 3′ UTR secondary structures and PK interactions for the production of sfRNA. To further understand the generation mechanism of sfRNA and its requirements, we deleted or mutated a number of RNA structures in the WNVKUN 3′ UTR and investigated the size and amount of sfRNA generated from these mutant RNAs. The results show that not only SLs but also PK interactions play a vital role in stabilizing the 3′ UTR RNA and preventing complete degradation of viral gRNA to produce nuclease-resistant sfRNA, which is required for efficient virus replication and cytopathicity in cells and virulence in mice.  相似文献   
83.
This study was carried out to elucidate the poorly understood processes of arthroconidiation through coremium formation using Pleurotus cystidiosus subsp. abalonus. The coremia exclusively produced dikaryotic arthroconidia with the remnant of a clamp connection. Cells in the subapical zone of the hyphal bundle reduced their length by division before arthroconidiation. Approximately 400 000 arthroconidia were produced by a coremium in 1 day, with constant productivity over a 2-week period. Continuous cell extension and division in the coremium stipe supplied cells for arthroconidiation at the coremium apex, which is surrounded by a liquid droplet (coremioliquid). Maintenance of moisture with coremioliquid was necessary for arthroconidiation. The coremioliquid formation was performed by active liquid transportation in the hyphae, a process that was blocked by the microtubule depolymerization agent thiabendazole.  相似文献   
84.
With the recent publication of the Cryptosporidium genome, investigation of the proteins expressed by Cryptosporidium parvum will provide complementary information on the biology of this complex organism. Proteomic studies on this apicomplexan parasite have been hampered due to the inability to culture or isolate high numbers required for 2D gel analysis. Neonatal calves are a common source of Cryptosporidium oocysts and we report on the development of a sucrose-Percoll purification procedure which produced the high yield and purity (free from faecal and bacterial contaminants) that is required for successful proteomic studies from neonatal calves. We report on the development of quantitative and qualitative flow cytometric methods which were confirmed by epifluorescence microscopy. A comparison of five common purification procedures was carried out to determine the efficiency of the sucrose-Percoll gradient. 2D-PAGE results strongly support the sucrose-Percoll procedure as the most suitable method for applications like proteomics which require the recovery of high numbers of isolated oocysts with minimal faecal and bacterial contaminants.  相似文献   
85.
Avian influenza A (H5N1) viruses cause severe disease in humans, but the basis for their virulence remains unclear. In vitro and animal studies indicate that high and disseminated viral replication is important for disease pathogenesis. Laboratory experiments suggest that virus-induced cytokine dysregulation may contribute to disease severity. To assess the relevance of these findings for human disease, we performed virological and immunological studies in 18 individuals with H5N1 and 8 individuals infected with human influenza virus subtypes. Influenza H5N1 infection in humans is characterized by high pharyngeal virus loads and frequent detection of viral RNA in rectum and blood. Viral RNA in blood was present only in fatal H5N1 cases and was associated with higher pharyngeal viral loads. We observed low peripheral blood T-lymphocyte counts and high chemokine and cytokine levels in H5N1-infected individuals, particularly in those who died, and these correlated with pharyngeal viral loads. Genetic characterization of H5N1 viruses revealed mutations in the viral polymerase complex associated with mammalian adaptation and virulence. Our observations indicate that high viral load, and the resulting intense inflammatory responses, are central to influenza H5N1 pathogenesis. The focus of clinical management should be on preventing this intense cytokine response, by early diagnosis and effective antiviral treatment.  相似文献   
86.
Malignant hyperthermia susceptibility (MHS) is primarily conferred by mutations within ryanodine receptor type 1 (RYR1). Here we address how the MHS mutation T4826I within the S4-S5 linker influences excitation-contraction coupling and resting myoplasmic Ca2+ concentration ([Ca2+]rest) in flexor digitorum brevis (FDB) and vastus lateralis prepared from heterozygous (Het) and homozygous (Hom) T4826I-RYR1 knock-in mice (Yuen, B. T., Boncompagni, S., Feng, W., Yang, T., Lopez, J. R., Matthaei, K. I., Goth, S. R., Protasi, F., Franzini-Armstrong, C., Allen, P. D., and Pessah, I. N. (2011) FASEB J. doi:22131268). FDB responses to electrical stimuli and acute halothane (0.1%, v/v) exposure showed a rank order of Hom ≫ Het ≫ WT. Release of Ca2+ from the sarcoplasmic reticulum and Ca2+ entry contributed to halothane-triggered increases in [Ca2+]rest in Hom FDBs and elicited pronounced Ca2+ oscillations in ∼30% of FDBs tested. Genotype contributed significantly elevated [Ca2+]rest (Hom > Het > WT) measured in vivo using ion-selective microelectrodes. Het and Hom oxygen consumption rates measured in intact myotubes using the Seahorse Bioscience (Billerica, MA) flux analyzer and mitochondrial content measured with MitoTracker were lower than WT, whereas total cellular calpain activity was higher than WT. Muscle membranes did not differ in RYR1 expression nor in Ser2844 phosphorylation among the genotypes. Single channel analysis showed highly divergent gating behavior with Hom and WT favoring open and closed states, respectively, whereas Het exhibited heterogeneous gating behaviors. [3H]Ryanodine binding analysis revealed a gene dose influence on binding density and regulation by Ca2+, Mg2+, and temperature. Pronounced abnormalities inherent in T4826I-RYR1 channels confer MHS and promote basal disturbances of excitation-contraction coupling, [Ca2+]rest, and oxygen consumption rates. Considering that both Het and Hom T4826I-RYR1 mice are viable, the remarkable isolated single channel dysfunction mediated through this mutation in S4-S5 cytoplasmic linker must be highly regulated in vivo.  相似文献   
87.
Although it is well established that ubiquitin-like modifications are tightly regulated, it has been unclear how their E1 activities are controlled. In this study, we found that the SAE2 subunit of the small ubiquitin-like modifier (SUMO) E1 is autoSUMOylated at residue Lys-236, and SUMOylation was catalyzed by Ubc9 at several additional Lys residues surrounding the catalytic Cys-173 of SAE2. AutoSUMOylation of SAE2 did not affect SUMO adenylation or formation of E1·SUMO thioester, but did significantly inhibit the transfer of SUMO from E1 to E2 and overall SUMO conjugations to target proteins due to the altered interaction between E1 and E2. Upon heat shock, SUMOylation of SAE2 was reduced, which corresponded with an increase in global SUMOylation, suggesting that SUMOylation of the Cys domain of SAE2 is a mechanism for "storing" a pool of E1 that can be quickly activated in response to environmental changes. This study is the first to show how E1 activity is controlled by post-translational modifications, and similar regulation likely exists across the homologous E1s of ubiquitin-like modifications.  相似文献   
88.
89.
90.

Objectives

To systematically summarize the randomized trial evidence regarding the relative effectiveness of cognitive behavioural therapy (CBT) in patients with depression in receipt of disability benefits in comparison to those not receiving disability benefits.

Data Sources

All relevant RCTs from a database of randomized controlled and comparative studies examining the effects of psychotherapy for adult depression (http://www.evidencebasedpsychotherapies.org), electronic databases (MEDLINE, EMBASE, PSYCINFO, AMED, CINAHL and CENTRAL) to June 2011, and bibliographies of all relevant articles.

Study Eligibility Criteria, Participants and Intervention

Adult patients with major depression, randomly assigned to CBT versus minimal/no treatment or care-as-usual.

Study Appraisal and Synthesis Methods

Three teams of reviewers, independently and in duplicate, completed title and abstract screening, full text review and data extraction. We performed an individual patient data meta-analysis to summarize data.

Results

Of 92 eligible trials, 70 provided author contact information; of these 56 (80%) were successfully contacted to establish if they captured receipt of benefits as a baseline characteristic; 8 recorded benefit status, and 3 enrolled some patients in receipt of benefits, of which 2 provided individual patient data. Including both patients receiving and not receiving disability benefits, 2 trials (227 patients) suggested a possible reduction in depression with CBT, as measured by the Beck Depression Inventory, mean difference [MD] (95% confidence interval [CI]) = −2.61 (−5.28, 0.07), p = 0.06; minimally important difference of 5. The effect appeared larger, though not significantly, in those in receipt of benefits (34 patients) versus not receiving benefits (193 patients); MD (95% CI) = −4.46 (−12.21, 3.30), p = 0.26.

Conclusions

Our data does not support the hypothesis that CBT has smaller effects in depressed patients receiving disability benefits versus other patients. Given that the confidence interval is wide, a decreased effect is still possible, though if the difference exists, it is likely to be small.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号