首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1272篇
  免费   188篇
  1460篇
  2021年   14篇
  2019年   20篇
  2018年   15篇
  2016年   25篇
  2015年   33篇
  2014年   29篇
  2013年   36篇
  2012年   65篇
  2011年   71篇
  2010年   51篇
  2009年   40篇
  2008年   48篇
  2007年   42篇
  2006年   41篇
  2005年   67篇
  2004年   49篇
  2003年   53篇
  2002年   48篇
  2001年   45篇
  2000年   46篇
  1999年   40篇
  1998年   29篇
  1997年   21篇
  1996年   19篇
  1995年   17篇
  1994年   18篇
  1993年   17篇
  1992年   33篇
  1991年   26篇
  1990年   20篇
  1989年   21篇
  1988年   13篇
  1987年   21篇
  1986年   15篇
  1985年   12篇
  1984年   10篇
  1983年   14篇
  1982年   12篇
  1980年   9篇
  1977年   8篇
  1976年   10篇
  1975年   15篇
  1974年   13篇
  1973年   18篇
  1972年   15篇
  1971年   20篇
  1970年   8篇
  1969年   18篇
  1968年   11篇
  1966年   11篇
排序方式: 共有1460条查询结果,搜索用时 15 毫秒
31.
We have isolated a number of plaque-morphology mutants from a strain of herpes simplex virus type I which, unlike the wild type, cause extensive cell fusion during a productive viral infection. After the onset of fusion, there is an exponential decrease in the number of single cells as a function of time after infection. At a multiplicity of infection (MOI) of 3.8 plaque-forming units per cell, fusion begins 5.3 h after infection with the number of single cells decreasing to 10% of the original number 10.2 h after infection. As the MOI is gradually increased from 0.4 to 8, the onset of fusion occurs earlier during infection. However, when the MOI is increased from 8 to 86, the onset of fusion does not occur any earlier. The rate of fusion is independent of the MOI for an MOI greater than 1. The rate of fusion varies linearly with initial cell density up to 3.5 X 10(4) cells/cm2 and is independent of initial cell density at higher cell concentrations. To assay cell fusion we have developed a smiple quantitative assay using a Coulter counter to measure the number of single cells as a function of time after infection. Data obtained using a Coulter counter are similar to those obtained with a microscope assay.  相似文献   
32.
Inhibition of the saturable influx of 0.05 mM 14C-labeled adenine or adenosine by AMP in adult Schistosoma mansoni in vitro suggested hydrolysis of this nucleotide at the tegumental surface of the parasite. Adenosine liberated as a result of AMP hydrolysis was the inhibitor of uptake of labeled adenine or adenosine. Inhibition of adenosine uptake by AMP or ATP was relieved by paranitrophenyl phosphate or ammonium molybdate supporting the hypothesis of nucleotide hydrolysis at the tengumental surface. Addition of glucose-1-phosphate, glucose-6-phosphate, NaF, or cysteine did not relieve AMP inhibition of adenosine uptake indicating substrate and inhibitor specificity for the surface enzyme(s). AMP, ATP, UMP, and p-nitrophenyl are hydrolyzed, at least in part, by the same enzyme(s). Apparent absorption of labeled AMP was preceded by hydrolysis, with labeled adenosine as the actual compound absorbed, although there was a small diffusion component for absorption of intact AMP. The site of nucleotide hydrolysis in close proximity to absorption sites provides a kinetic advantage for uptake of products of adenine nucleotide hydrolysis but not for products of uracil nucleotide hydrolysis.  相似文献   
33.
Maternal transfer of strain-specific immunity in an invertebrate   总被引:10,自引:0,他引:10  
The most celebrated component of the vertebrate immune system is the acquired response in which memory cells established during primary infection enhance the proliferation of antibodies during secondary infection. Additionally, the strength of vertebrate acquired immune responses varies dramatically depending on the infecting pathogen species or on the pathogen genotype within species. Because invertebrates lack the T-cell receptors and Major Histocompatibility Complex (MHC) molecules that mediate vertebrate adaptive immune responses, they are thought to lack adaptive immunity and be relatively unspecific in their interactions with pathogens. With only innate immunity, invertebrate hosts are believed to be nai;ve at each new encounter with pathogens. Nevertheless, some forms of facultative immunity appear to be important in insects; some individuals have enhanced immunity due to population density, and some social insects benefit when their nest-mates have been exposed to a pathogen or pathogen mimic (; see for a predation example.) Here we provide evidence for acquired strain-specific immunity in the crustacean Daphnia magna infected with the pathogenic bacteria Pasteuria ramosa. Specifically, the fitness of hosts was enhanced when challenged with a bacterial strain their mother had experienced relative to cases when mother and offspring were challenged with different strains.  相似文献   
34.
Previous studies have suggested that Plasmodium parasites can manipulate mosquito feeding behaviours such as probing, persistence and engorgement rate in order to enhance transmission success. Here, we broaden analysis of this ‘manipulation phenotype’ to consider proximate foraging behaviours, including responsiveness to host odours and host location. Using Anopheles stephensi and Plasmodium yoelii as a model system, we demonstrate that mosquitoes with early stage infections (i.e. non-infectious oocysts) exhibit reduced attraction to a human host, whereas those with late-stage infections (i.e. infectious sporozoites) exhibit increased attraction. These stage-specific changes in behaviour were paralleled by changes in the responsiveness of mosquito odourant receptors, providing a possible neurophysiological mechanism for the responses. However, we also found that both the behavioural and neurophysiological changes could be generated by immune challenge with heat-killed Escherichia coli and were thus not tied explicitly to the presence of malaria parasites. Our results support the hypothesis that the feeding behaviour of female mosquitoes is altered by Plasmodium, but question the extent to which this is owing to active manipulation by malaria parasites of host behaviour.  相似文献   
35.
Flow cytometry is an automated, laser- or impedance-based, high throughput method that allows very rapid analysis of multiple chemical and physical characteristics of single cells within a cell population. It is an extremely powerful technology that has been used for over four decades with filamentous fungi. Although single cells within a cell population are normally analysed rapidly on a cell-by-cell basis using the technique, flow cytometry can also be used to analyse cell (e.g. spore) aggregates or entire microcolonies. Living or fixed cells can be stained with a wide range of fluorescent reporters to label different cell components or measure different physiological processes. Flow cytometry is also suited for measurements of cell size, interaction, aggregation or shape using non-labelled cells by means of analysing their light scattering characteristics. Fluorescence-activated cell sorting (FACS) is a specialized form of flow cytometry that provides a method for sorting a heterogeneous mixture of cells into two or more containers based upon the fluorescence and/or light scattering properties of each cell. The major advantage of analysing cells by flow cytometry over microscopy is the speed of analysis: thousands of cells can be analysed per second or sorted in minutes. Drawbacks of flow cytometry are that specific cells cannot be followed in time and normally spatial information relating to individual cells is lacking. A big advantage over microscopy is when using FACS, cells with desired characteristics can be sorted for downstream experimentation (e.g. for growth, infection, enzyme production, gene expression assays or ‘omics’ approaches). In this review, we explain the basic concepts of flow cytometry and FACS, define its advantages and disadvantages in comparison with microscopy, and describe the wide range of applications in which these powerful technologies have been used with filamentous fungi.  相似文献   
36.
Elevated intraocular pressure is an important risk factor for the development of glaucoma, a leading cause of irreversible blindness. This ocular hypertension is due to increased hydrodynamic resistance to the drainage of aqueous humor through specialized outflow tissues, including the trabecular meshwork (TM) and the endothelial lining of Schlemm's canal. We know that glucocorticoid therapy can cause increased outflow resistance and glaucoma in susceptible individuals, that the cytoskeleton helps regulate aqueous outflow resistance, and that glucocorticoid treatment alters the actin cytoskeleton of cultured TM cells. Our purpose was to characterize the actin cytoskeleton of cells in outflow pathway tissues in situ, to characterize changes in the cytoskeleton due to dexamethasone treatment in situ, and to compare these with changes observed in cell culture. Human ocular anterior segments were perfused with or without 10(-7) M dexamethasone, and F-actin architecture was investigated by confocal laser scanning microscopy. We found that outflow pathway cells contained stress fibers, peripheral actin staining, and occasional actin "tangles." Dexamethasone treatment caused elevated IOP in several eyes and increased overall actin staining, with more actin tangles and the formation of cross-linked actin networks (CLANs). The actin architecture in TM tissues was remarkably similar to that seen in cultured TM cells. Although CLANs have been reported previously in cultured cells, this is the first report of CLANs in tissue. These cytoskeletal changes may be associated with increased aqueous humor outflow resistance after ocular glucocorticoid treatment.  相似文献   
37.
RNA-binding properties of the mitochondrial Y-box protein RBP16   总被引:6,自引:3,他引:6  
We have previously identified a mitochondrial Y-box protein in Trypanosoma brucei that we designated RBP16. The predicted RBP16 amino acid sequence revealed the presence of a cold-shock domain at its N-terminus and a glycine- and arginine-rich C-terminus reminiscent of an RGG RNA-binding motif. Since RBP16 is capable of interacting with different guide RNAs (gRNAs) in vitro and in vivo primarily via the oligo(U) tail, as well as with ribosomal RNAs, possible functions of RBP16 may be in kinetoplastid RNA editing and/or translation. Herein, we report experiments that further define the RNA-binding properties of RBP16. RBP16 forms a single stable complex with the gRNA gA6[14] at low protein concentration, while at higher protein concentration two stable complexes that possibly represent two different conformations are observed. Both complexes are stable at relatively high salt and moderate heparin concentrations indicating that the binding of RBP16 to gA6[14] does not rely primarily on ionic interactions. Phenylglyoxal treatment of the protein indicates that arginine residues are important in RNA binding. The minimal length of RNA sequence necessary for the binding of RBP16 was assessed by gel retardation and UV cross-linking competition assays using oligo(U) ribonucleotides of varying lengths (4–40 nt). Although RBP16 can bind to oligonucleotides as small as U4, its affinity increases with the length of the oligo(U) ribonucleotide, with a dramatic increase in binding efficiency observed when the length is increased to 10 nt. Gel retardation assays employing T.brucei mRNAs demonstrated that, although it acts as a major binding determinant, a 3′ U tail is not an absolute requirement for efficient RBP16RNA binding. Experiments with oligonucleotides containing U stretches embedded at different positions in oligo(dC) indicated that high-affinity binding requires both a uridine stretch, as well as 5′ and 3′ non-specific sequences. These results suggest a model for the molecular interactions involved in RBP16RNA binding.  相似文献   
38.
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号