首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   6篇
  国内免费   2篇
  82篇
  2022年   1篇
  2020年   1篇
  2018年   1篇
  2016年   2篇
  2015年   5篇
  2014年   4篇
  2013年   2篇
  2012年   5篇
  2011年   1篇
  2010年   6篇
  2009年   4篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   5篇
  2004年   6篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1977年   3篇
  1970年   1篇
  1969年   1篇
排序方式: 共有82条查询结果,搜索用时 15 毫秒
31.
The aim of this paper was to compare the effect of haplotype definition on the precision of QTL-mapping and on the accuracy of predicted genomic breeding values. In a multiple QTL model using identity-by-descent (IBD) probabilities between haplotypes, various haplotype definitions were tested i.e. including 2, 6, 12 or 20 marker alleles and clustering base haplotypes related with an IBD probability of > 0.55, 0.75 or 0.95. Simulated data contained 1100 animals with known genotypes and phenotypes and 1000 animals with known genotypes and unknown phenotypes. Genomes comprising 3 Morgan were simulated and contained 74 polymorphic QTL and 383 polymorphic SNP markers with an average r2 value of 0.14 between adjacent markers. The total number of haplotypes decreased up to 50% when the window size was increased from two to 20 markers and decreased by at least 50% when haplotypes related with an IBD probability of > 0.55 instead of > 0.95 were clustered. An intermediate window size led to more precise QTL mapping. Window size and clustering had a limited effect on the accuracy of predicted total breeding values, ranging from 0.79 to 0.81. Our conclusion is that different optimal window sizes should be used in QTL-mapping versus genome-wide breeding value prediction.  相似文献   
32.
We describe a novel immobilization technique to investigate interactions between immobilized gangliosides (GD3, GM1, and GM2) and their respective antibodies, antibody fragments, or binding partners using an optical biosensor. Immobilization was performed by direct injection onto a carboxymethyldextran sensor chip and did not require derivatization of the sensor surface or the ganglioside. The ganglioside appeared to bind to the sensor surface by hydrophobic interaction, leaving the carbohydrate epitope available for antibody or, in the case of GM1, cholera toxin binding. The carboxyl group of the dextran chains on the sensor surface did not appear to be involved in the immobilization as evidenced by equivalent levels of immobilization following conversion of the carboxyl groups into acyl amino esters, but rather the dextran layer provided a hydrophilic coverage of the sensor chip which was essential to prevent nonspecific binding. This technique gave better reactivity and specificity for anti- ganglioside monoclonal antibodies (anti-GD3: KM871, KM641, R24; and anti-GM2: KM966) than immobilization by hydrophobic interaction onto a gold sensor surface or photoactivated cross-linking onto carboxymethydextran. This rapid immobilization procedure has facilitated detailed kinetic analysis of ganglioside/antibody interactions, with the surface remaining viable for a large number of cycles (>125). Kinetic constants were determined from the biosensor data using linear regression, nonlinear least squares and equilibrium analysis. The values of kd, ka, and KAobtained by nonlinear analysis (KAKM871 = 1.05, KM641 = 1.66, R24 = 0.14, and KM966 = 0.65 x 10(7) M- 1) were essentially independent of concentration and showed good agreement with data obtained by other analytical methods.   相似文献   
33.
Olfactory regulation of mosquito-host interactions   总被引:8,自引:0,他引:8  
Mosquitoes that act as disease vectors rely upon olfactory cues to direct several important behaviors that are fundamentally involved in establishing their overall vectorial capacity. Of these, the propensity to select humans for blood feeding is arguably the most important of these olfactory driven behaviors in so far as it significantly contributes to the ability of these mosquitoes to transmit pathogens that cause diseases such as dengue, yellow fever and most significantly human malaria. Here, we review significant advances in behavioral, physiological and molecular investigations into mosquito host preference, with a particular emphasis on studies that have emerged in the post-genomic era that seek to combine these approaches.  相似文献   
34.
An approximately 14-kb region of genomic DNA encoding the wild-type white eye (w+) color gene from the medfly, Ceratitis capitata has been cloned and characterized at the molecular level. Comparison of the intron-exon organization of this locus among several dipteran insects reveals distinct organizational patterns that are consistent with the phylogenetic relationships of these flies and the dendrogram of the predicted primary amino acid sequence of the white loci. An examination of w+ expression during medfly development has been carried out, displaying overall similarity to corresponding studies for white gene homologues in Drosophila melanogaster and other insects. Interestingly, we have detected two phenotypically neutral allelic forms of the locus that have arisen as the result of an apparently novel insertion or deletion event located in the large first intron of the medfly white locus. Cloning and sequencing of two mutant white alleles, w1 and w2, from the we,wp and M245 strains, respectively, indicate that the mutant conditions in these strains are the result of independent events--a frameshift mutation in exon 6 for w1 and a deletion including a large part of exon 2 in the case of w2.  相似文献   
35.

Background

Insect odorant receptors (ORs) function as odorant-gated ion channels consisting of a conventional, odorant-binding OR and the Orco coreceptor. While Orco can function as a homomeric ion channel, the role(s) of the conventional OR in heteromeric OR complexes has largely focused only on odorant recognition.

Results

To investigate other roles of odorant-binding ORs, we have employed patch clamp electrophysiology to investigate the properties of the channel pore of several OR complexes formed by a range of different odorant-specific Anopheles gambiae ORs (AgOrs) each paired with AgOrco. These studies reveal significant differences in cation permeability and ruthenium red susceptibility among different AgOr complexes.

Conclusions

With observable differences in channel function, the data support a model in which the odorant-binding OR also affects the channel pore. The variable effect contributed by the conventional OR on the conductive properties of odorant-gated sensory channels adds additional complexity to insect olfactory signaling, with differences in odor coding beginning with ORs on the periphery of the olfactory system.  相似文献   
36.
37.
Accumulation of glucosinolates, a class of defense-related secondary metabolites found almost exclusively in the Capparales, is induced in response to a variety of biological stresses. It is often assumed that elevated glucosinolate levels result from de novo biosynthesis, but glucosinolate transport from other parts of the plant to the site of herbivory or pathogen infection can also contribute to the defense response. Several studies with Arabidopsis and other crucifers have demonstrated that glucosinolates from vegetative tissue are transported to developing seeds. Here we discuss evidence that long-chain aliphatic glucosinolates are transported to the site of herbivory in response to Myzus persicae (green peach aphid) feeding on Arabidopsis.Key Words: glucosinolate, transport, graft, Arabidopsis, Myzus persicae, aphid  相似文献   
38.
Pitts RJ  Zwiebel LJ 《Genetics》2001,158(4):1645-1655
Xanthine dehydrogenase (XDH) is a member of the molybdenum hydroxylase family of enzymes catalyzing the oxidation of hypoxanthine and xanthine to uric acid. The enzyme is also required for the production of one of the major Drosophila eye pigments, drosopterin. The XDH gene has been isolated in many species representing a broad cross section of the major groups of living organisms, including the cDNA encoding XDH from the Mediterranean fruit fly Ceratitis capitata (CcXDH) described here. CcXDH is closely related to other insect XDHs and is able to rescue the phenotype of the Drosophila melanogaster XDH mutant, rosy, in germline transformation experiments. A previously identified medfly mutant, termed rosy, whose phenotype is suggestive of a disruption in XDH function, has been examined for possible mutations in the XDH gene. However, we find no direct evidence that a mutation in the CcXDH gene or that a reduction in the CcXDH enzyme activity is present in rosy medflies. Conclusive studies of the nature of the medfly rosy mutant will require rescue by germline transformation of mutant medflies.  相似文献   
39.
The control of ionized calcium in squid axons   总被引:9,自引:6,他引:3       下载免费PDF全文
Measurements of the Ca content, [Ca](T), of freshly isolated squid axons show a value of 60 μmol/kg axoplasm. Axons in 3 mM Ca(Na) seawater show little change in Ca content over 4 h, while axons in 3 mM Ca(Na) seawater show little change in Ca content over 4 h, while axons in 10 mM Ca(Na) seawater show gains of 18 μmol/Ca/kgxh. In 10 Ca (Choline) seawater the gain is 2,400 μmol/kgxh. Using aequorin confined to a dialysis capillary in the center of an axon, one finds that [Ca](i) is in a steady state with 3 Ca (Na) seawater, and that both 10 Ca (Na) and 3 Ca (choline) seawater cause increases in [Ca](i). In 3 Ca (Na) seawater-3 Ca (choline) seawater mixtures, 180 mM [Na](0) (40 perecent Na) is as effective as 450 mM [Na](0) (100 percent Na) in maintaining a normal [Ca](1); lower [Na] causes an increase in [Ca](i). If axons are injected with the ATP-splitting enzyme apyrase, the resulting [Ca](1) is not loading with high [Ca](0) or low [Na](0) solutions. Depolarization of an axon with 100 mM K (Na) seawater leads to an increase in the steady-state level of [Ca](1) that is reversed upon returning the axon to normal seawater. Freshly isolated axons treated with either CN or FCCP to inhibit mitochondrial Ca buffering can still maintain a normal [Ca](i) in 1 Ca (Na) seawater.  相似文献   
40.
Insect odorant receptors are heteromeric odorant-gated cation channels comprising a conventional odorant-sensitive tuning receptor (ORx) and a highly conserved co-receptor known as Orco. Orco is found only in insects, and very little is known about its structure and the mechanism leading to channel activation. In the absence of an ORx, Orco forms homomeric channels that can be activated by a synthetic agonist, VUAA1. Drosophila melanogaster Orco (DmelOrco) contains eight cysteine amino acid residues, six of which are highly conserved. In this study, we replaced individual cysteine residues with serine or alanine and expressed Orco mutants in Flp-In 293 T-Rex cells. Changes in intracellular Ca2+ levels were used to determine responses to VUAA1. Replacement of two cysteines (Cys-429 and Cys-449) in a predicted intracellular loop (ICL3), individually or together, gave variants that all showed similar increases in the rate of response and sensitivity to VUAA1 compared with wild-type DmelOrco. Kinetic modeling indicated that the response of the Orco mutants to VUAA1 was faster than wild-type Orco. The enhanced sensitivity and faster response of the Cys mutants was confirmed by whole-cell voltage clamp electrophysiology. In contrast to the results from direct agonist activation of Orco, the two cysteine replacement mutants when co-expressed with a tuning receptor (DmelOR22a) showed an ∼10-fold decrease in potency for activation by 2-methyl hexanoate. Our work has shown that intracellular loop 3 is important for Orco channel activation. Importantly, this study also suggests differences in the structural requirements for the activation of homomeric and heteromeric Orco channel complexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号