首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   8篇
  国内免费   2篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   5篇
  2013年   3篇
  2012年   6篇
  2011年   3篇
  2010年   7篇
  2009年   7篇
  2008年   6篇
  2007年   3篇
  2006年   9篇
  2005年   8篇
  2004年   8篇
  2003年   2篇
  2002年   8篇
  2001年   8篇
  2000年   5篇
  1999年   5篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1993年   2篇
  1992年   4篇
  1991年   4篇
  1990年   6篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
  1984年   2篇
  1983年   3篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1977年   3篇
  1974年   1篇
  1969年   2篇
  1968年   2篇
  1965年   1篇
  1964年   1篇
  1960年   1篇
  1959年   1篇
排序方式: 共有162条查询结果,搜索用时 187 毫秒
21.
Insects have an enormous impact on global public health as disease vectors and as agricultural enablers as well as pests and olfaction is an important sensory input to their behavior. As such it is of great value to understand the interplay of the molecular components of the olfactory system which, in addition to fostering a better understanding of insect neurobiology, may ultimately aid in devising novel intervention strategies to reduce disease transmission or crop damage. Since the first discovery of odorant receptors in vertebrates over a decade ago, much of our view on how the insect olfactory system might work has been derived from observations made in vertebrates and other invertebrates, such as lobsters or nematodes. Together with the advantages of a wide range of genetic tools, the identification of the first insect odorant receptors in Drosophila melanogaster in 1999 paved the way for rapid progress in unraveling the question of how olfactory signal transduction and processing occurs in the fruitfly. This review intends to summarize much of this progress and to point out some areas where advances can be expected in the near future.  相似文献   
22.
Highly concentrated human recombinant interleukin-1 receptor antagonist (IL-1ra) aggregates at elevated temperature without perturbation in its secondary structure. The protein aggregation can be suppressed depending on the buffer ionic strength and the type of anion present in the sample solution. Phosphate is an approximately 4-fold weaker suppressant than either citrate or pyrophosphate on the basis of the measured protein aggregation rates. This is in agreement with the strength of protein-anion interactions at the IL-1ra single anion-binding site as judged by the estimated dissociation constant values of 2.9 mM, 3.8 mM, and 13.7 mM for pyrophosphate, citrate, and phosphate, respectively. The strength of binding also correlates with the anion size and with the number of ionized groups available per molecule at a given pH. Affinity probing of IL-1ra with methyl acetyl phosphate (MAP) in combination with proteolytic digestion and mass spectral analysis show that an anion-binding site location on the IL-1ra surface is contributed by lysine-93 and lysine-96 of the loop 84-98 as well as by lysine-6 of the unstructured N-terminal region 1-7. The replacement of lysine-93 with alanine by site-directed mutagenesis results in dramatically suppressed IL-1ra aggregation. Furthermore, when the unstructured N-terminal region of IL-1ra is removed by limited proteolysis, a 2-fold increase in the time course of the aggregation lag phase is observed for the truncated protein. An anion-controlled mechanism of IL-1ra aggregation is proposed by which the anion competition for the protein cationic site prevents formation of intermolecular cation-pi interactions and, thus, interferes with the protein asymmetric self-association pathway.  相似文献   
23.
Tuesuwan B  Kerwin SM 《Biochemistry》2006,45(23):7265-7276
Diradical-generating cyclizations such as the enediyne Bergman cyclization and the enyne allene Myers-Saito cyclization have been exploited by nature in the mechanism of DNA cleavage by a series of potent antitumor antibiotics. Alternative diradical-generating cyclizations have been proposed in the design of selective antitumor agents; however, little information is available concerning the utility of these alternative cyclizations in radical-based DNA cleavage chemistry. One such alternative diradical-generating cyclization, the aza-Myers-Saito cyclization of aza-enyne allenes that are derived from base-promoted isomerization of skipped aza-enediynes, has been recently reported. Here, we report the synthesis and DNA cleavage chemistry of a series of pyridinium skipped aza-enediynes (2-alkynyl-N-propargyl pyridinium salts). Efficient DNA cleavage requires the presence of the skipped aza-enediyne functionality, and optimal DNA cleavage occurs at basic pH. Within this series of compounds, the analogue bearing a p-methoxyphenyl group on the pyridinium 2-alkyne substituents was found to be the most effective DNA cleavage agent, displaying significant supercoiled DNA-nicking activity at concentrations as low as 1 microM. Detailed studies of this analogue show that DNA cleavage occurs through 4'-hydrogen-atom abstraction from the DNA backbone and oxidation of guanine bases. This is the first report of enediyne-like radical-based DNA cleavage by an agent designed to undergo an alternative diradical-generating cyclization.  相似文献   
24.
ABSTRACT: BACKGROUND: There has been renewed interest in biopharmaceuticals based on plasmid DNA (pDNA) in recent years due to the approval of several veterinary DNA vaccines, on-going clinical trials of human pDNA-based therapies, and significant advances in adjuvants and delivery vehicles that have helped overcome earlier efficacy deficits. With this interest comes the need for high-yield, cost-effective manufacturing processes. To this end, vector engineering is one promising strategy to improve plasmid production. RESULTS: In this work, we have constructed a new DNA vaccine vector, pDMB02-GFP, containing the runaway R1 origin of replication. The runaway replication phenotype should result in plasmid copy number amplification after a temperature shift from 30degreesC to 42degreesC. However, using Escherichia coli DH5alpha as a host, we observed that the highest yields of pDMB02-GFP were achieved during constant-temperature culture at 30degreesC, with a maximum yield of approximately 19 mg pDNA/g DCW being observed. By measuring mRNA and protein levels of the R1 replication initiator protein, RepA, we determined that RepA may be limiting pDMB02-GFP yield at 42degreesC. A mutant plasmid, pDMB-ATG, was constructed by changing the repA start codon from the sub-optimal GTG to ATG. In cultures of DH5alpha[pDMB-ATG], temperature-induced plasmid amplification was more dramatic than that observed with pDMB02-GFP, and RepA protein was detectable for several hours longer than in cultures of pDMB02-GFP at 42degreesC. CONCLUSIONS: Overall, we have demonstrated that R1-based plasmids can produce high yields of high-quality pDNA without the need for a temperature shift, and have laid the groundwork for further investigation of this class of vectors in the context of plasmid DNA production.  相似文献   
25.
This dissection and sampling procedure was developed for the Network for Pancreatic Organ Donors with Diabetes (nPOD) program to standardize preparation of pancreas recovered from cadaveric organ donors. The pancreas is divided into 3 main regions (head, body, tail) followed by serial transverse sections throughout the medial to lateral axis. Alternating sections are used for fixed paraffin and fresh frozen blocks and remnant samples are minced for snap frozen sample preparations, either with or without RNAse inhibitors, for DNA, RNA, or protein isolation. The overall goal of the pancreas dissection procedure is to sample the entire pancreas while maintaining anatomical orientation. Endocrine cell heterogeneity in terms of islet composition, size, and numbers is reported for human islets compared to rodent islets. The majority of human islets from the pancreas head, body and tail regions are composed of insulin-containing β-cells followed by lower proportions of glucagon-containing α-cells and somatostatin-containing δ-cells. Pancreatic polypeptide-containing PP cells and ghrelin-containing epsilon cells are also present but in small numbers. In contrast, the uncinate region contains islets that are primarily composed of pancreatic polypeptide-containing PP cells. These regional islet variations arise from developmental differences. The pancreas develops from the ventral and dorsal pancreatic buds in the foregut and after rotation of the stomach and duodenum, the ventral lobe moves and fuses with the dorsal. The ventral lobe forms the posterior portion of the head including the uncinate process while the dorsal lobe gives rise to the rest of the organ. Regional pancreatic variation is also reported with the tail region having higher islet density compared to other regions and the dorsal lobe-derived components undergoing selective atrophy in type 1 diabetes. Additional organs and tissues are often recovered from the organ donors and include pancreatic lymph nodes, spleen and non-pancreatic lymph nodes. These samples are recovered with similar formats as for the pancreas with the addition of isolation of cryopreserved cells. When the proximal duodenum is included with the pancreas, duodenal mucosa may be collected for paraffin and frozen blocks and minced snap frozen preparations.  相似文献   
26.
A rapid fluorescence assay for G-quadruplex DNA cleavage was used to investigate the preference of TMPyP4 photochemical and Mn·TMPyP4 oxidative cleavage. Both agents most efficiently cleave the c-Myc promoter G-quadruplex. Direct PAGE analysis of selected assay samples showed that for a given cleavage agent, different cleavage products are formed from different G-quadruplex structures. Cleavage assays carried out in the presence of excess competitor nucleic acid structures revealed the binding selectivity of cleavage agents, while comparisons with duplex cleavage efficiency employing a dual-labeled hairpin oligonucleotide revealed neither agent prefers G-quadruplex over duplex substrates. Finally, this assay was used to identify the perylene diimide Tel11 as a photocleavage agent for the c-Myc G-quadruplex.  相似文献   
27.
On the basis of growing evidence for G-quadruplex DNA structures in genomic DNA and the presumed need to resolve these structures for DNA replication, the G-quadruplex DNA unwinding ability of a prototypical replicative helicase, SV40 large T-antigen (T-ag), was investigated. Here, we demonstrate that this G-quadruplex helicase activity is robust and comparable to the duplex helicase activity of T-ag. Analysis of the SV40 genome demonstrates the presence of sequences that may form intramolecular G-quadruplexes, which are the presumed natural substrates for the G-quadruplex helicase activity of T-ag. A number of G-quadruplex-interactive agents as well as new perylene diimide (PDI) derivatives have been investigated as inhibitors of both the G-quadruplex and the duplex DNA helicase activities of T-ag. A unique subset of these G-quadruplex-interactive agents inhibits the G-quadruplex DNA unwinding activity of T-ag, relative to those reported to inhibit G-quadruplex DNA unwinding by RecQ-family helicases. We also find that certain PDIs are both potent and selective inhibitors of the G-quadruplex DNA helicase activity of T-ag. Surface plasmon resonance and fluorescence spectroscopic G-quadruplex DNA binding studies of these T-ag G-quadruplex helicase inhibitors have been carried out, demonstrating the importance of attributes in addition to binding affinity for G-quadruplex DNA that may be important for inhibition. The identification of potent and selective inhibitors of the G-quadruplex helicase activity of T-ag provides tools for probing the specific role of this activity in SV40 replication.  相似文献   
28.
The interactions of self-complementary oligonucleotides with a group of metal-mediated DNA-binding drugs, including chromomycin A3, mithramycin and the novel compound UK-1, were examined via electrospray ionization quadrupole ion trap mass spectrometry. Both chromomycin and mithramycin were shown to bind preferentially to GC-rich oligonucleotide duplexes in a 2:1 drug:metal ratio, while UK-1 was shown to bind in a 1:1 drug:metal stoichiometric ratio without a strong sequence preference. These trends were observed in the presence of Co2+, Ni2+ and Zn2+, with the exception that chromomycin–Zn2+ complexes were not readily observed. The binding stoichiometries as well as the sequence specificities are in agreement with literature reports for solution studies. Binding selectivities and stabilities of the complexes were also probed using electrospray ionization mass spectrometry. Both of the GC-rich oligomers 5′-GCGCGC-3′ and 5′-GCGCATGCGC-3′ exhibited a binding preference for chromomycin over mithramycin in the presence of Co2+ and Ni2+. Energy-variable collisionally activated dissociation of the complexes was employed to determine the stabilities of the complexes. The relative metal-dependent binding energies were Ni2+ > Zn2+ > Co2+ for UK-1–oligomer complexes and Ni2+ > Co2+ for both mithramycin and chromomycin complexes.  相似文献   
29.
30.
A J Kerwin 《CMAJ》1984,131(4):315-317
Sudden or instantaneous death is nearly always of cardiac origin. The most common mechanism is a severe electrical dysfunction, which is apparent on Holter monitoring tapes. Identifying patients at risk of sudden cardiac death is difficult, and Holter monitoring has proved to be limited in its diagnostic usefulness. However, in patients who have experienced cardiac arrest Holter monitoring has shown that the electrical abnormalities leading to death vary. These abnormalities usually take time to develop, and during this time the cerebral circulation is partially maintained. In this brief period, lasting less than 2 minutes, the individual may become aware that something is wrong and have time to react.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号