首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3279篇
  免费   407篇
  国内免费   2篇
  3688篇
  2021年   29篇
  2020年   28篇
  2019年   36篇
  2018年   35篇
  2017年   36篇
  2016年   71篇
  2015年   114篇
  2014年   79篇
  2013年   108篇
  2012年   166篇
  2011年   155篇
  2010年   95篇
  2009年   83篇
  2008年   136篇
  2007年   138篇
  2006年   115篇
  2005年   118篇
  2004年   141篇
  2003年   120篇
  2002年   108篇
  2001年   116篇
  2000年   106篇
  1999年   103篇
  1998年   51篇
  1997年   39篇
  1996年   37篇
  1995年   34篇
  1994年   28篇
  1993年   30篇
  1992年   57篇
  1991年   68篇
  1990年   67篇
  1989年   56篇
  1988年   48篇
  1987年   58篇
  1986年   71篇
  1985年   51篇
  1984年   32篇
  1983年   33篇
  1982年   35篇
  1981年   30篇
  1980年   32篇
  1979年   42篇
  1978年   30篇
  1977年   27篇
  1976年   35篇
  1974年   28篇
  1973年   29篇
  1969年   27篇
  1966年   30篇
排序方式: 共有3688条查询结果,搜索用时 4 毫秒
101.
A potential region of drug-DNA interaction in the A subunit of DNA gyrase has previously been identified from crystallographic studies. The local amino acid sequence has been compared with similar regions in yeast topoisomerase II and human topoisomerase IIalpha. Three non- conserved, potentially solvent-accessible residues at positions 762, 763 and 766 in human topoisomerase IIalpha lie between well-conserved regions. The corresponding residues in GyrA (83, 84 and 87) have a high frequency of mutation in quinolone-resistant bacteria. Mutations in human topoisomerase IIalpha have been generated in an attempt to engineer ciprofloxacin sensitivity into this enzyme: M762S, S763A and M766D (each mutated to the identical amino acid present in gyrase), along with an M762S/S763A double mutant and a triple mutant. These enzymes were introduced into a temperature-sensitive yeast strain, deficient in topoisomerase II, for in vivo studies, and were overproduced for in vitro studies. The M766D mutation renders the enzyme incapable of supporting the temperature-sensitive strain at a non-permissive temperature. However, both M766D and the triple mutant enzymes can be overproduced and are fully active in vitro. The double mutant was impaired in its ability to cleave DNA and had reduced catalytic activity. The triple mutation confers a three-fold increase in sensitivity to ciprofloxacin in vitro and similar sensitivities to a range of other quinolones. The activity of the quinolone CP-115,953, a bacterial and eukaryotic topoisomerase II poison, was unaffected by any of these mutations. Mutations in this region were found to increase the sensitivity of the enzyme to the DNA intercalating anti-tumour agents m-AMSA and ellipticine, but confer resistance to the non-intercalating agents etoposide, teniposide and merbarone, an effect that was maximal in the triple mutant. We have therefore shown the importance of this region in determining the sensitivity of topoisomerase II to drugs and have engineered increased sensitivity to quinolones.  相似文献   
102.
Aminoacyl-tRNA synthetases (aaRSs) play a key role in deciphering the genetic message by producing charged tRNAs and are equipped with proofreading mechanisms to ensure correct pairing of tRNAs with their cognate amino acid. Duplicated aaRSs are very frequent in Nature, with 25,913 cases observed in 26,837 genomes. The oligomeric nature of many aaRSs raises the question of how the functioning and oligomerization of duplicated enzymes is organized. We characterized this issue in a model prokaryotic organism that expresses two different threonyl-tRNA synthetases, responsible for Thr-tRNAThr synthesis: one accurate and constitutively expressed (T1) and another (T2) with impaired proofreading activity that also generates mischarged Ser-tRNAThr. Low zinc promotes dissociation of dimeric T1 into monomers deprived of aminoacylation activity and simultaneous induction of T2, which is active for aminoacylation under low zinc. T2 either forms homodimers or heterodimerizes with T1 subunits that provide essential proofreading activity in trans. These findings evidence that in organisms with duplicated genes, cells can orchestrate the assemblage of aaRSs oligomers that meet the necessities of the cell in each situation. We propose that controlled oligomerization of duplicated aaRSs is an adaptive mechanism that can potentially be expanded to the plethora of organisms with duplicated oligomeric aaRSs.  相似文献   
103.
We show that in animal mitochondria homologous genes that differ in guanine plus cytosine (G + C) content code for proteins differing in amino acid content in a manner that relates to the G + C content of the codons. DNA sequences were analyzed using square plots, a new method that combines graphical visualization and statistical analysis of compositional differences in both DNA and protein. Square plots divide codons into four groups based on first and second position A + T (adenine plus thymine) and G + C content and indicate differences in amino acid content when comparing sequences that differ in G + C content. When sequences are compared using these plots, the amino acid content is shown to correlate with the nucleotide bias of the genes. This amino acid effect is shown in all protein-coding genes in the mitochondrial genome, including cox I, cox II, and cyt b, mitochondrial genes which are commonly used for phylogenetic studies. Furthermore, nucleotide content differences are shown to affect the content of all amino acids with A + T- and G + C-rich codons. We speculate that phylogenetic analysis of genes so affected may tend erroneously to indicate relatedness (or lack thereof) based only on amino acid content. Received: 3 July 1996 / Accepted: 6 November 1996  相似文献   
104.
The pili of Neisseria meningitidis are a key virulence factor, being major adhesins of this capsulate organism that contribute to specificity for the human host. Recently it has been reported that meningococcal pili are post-translationally modified by the addition of an O-linked trisaccharide, Gal (β1–4) Gal (α1–3) 2,4-diacetimido-2,4,6-trideoxyhexose. Using a set of random genomic sequences from N. meningitidis strain MC58, we have identified a novel gene homologous to a family of glycosyltransferases. A plasmid clone containing the gene was isolated from a genomic library of N. meningitidis strain MC58 and its nucleotide sequence determined. The clone contained a complete copy of the gene, here designated pglA (pilin glycosylation). Insertional mutations were constructed in pglA in a range of meningococcal strains with well-defined lipopolysaccharide (LPS) or pilin-linked glycan structures to determine whether pglA had a role in the biosynthesis of these molecules. There was no alteration in the phenotype of LPS from pglA mutant strains as judged by gel migration and the binding of monoclonal antibodies. In contrast, decreased gel migration of the pilin subunit molecules of pglA mutants was observed, which was similar to the migration of pilins of galE mutants of same strains, supporting the notion that pglA is a glycosyltransferase involved in the biosynthesis of the pilin-linked trisaccharide structure. The pglA mutation, like the galE mutation reported previously, had no effect on pilus-mediated adhesion to human epithelial or endothelial cells. Pilin from pglA mutants were unable to bind to monospecific antisera recognizing the Gal (β1–4) Gal structure, suggesting that PglA is a glycosyltransferase involved in the addition of galactose of the trisaccharide substituent of pilin.  相似文献   
105.
Insulin stimulates glucose uptake into muscle and fat cells by translocating glucose transporter 4 (GLUT4) to the cell surface, with input from phosphatidylinositol (PI) 3-kinase and its downstream effector Akt/protein kinase B. Whether PI 3,4,5-trisphosphate (PI(3,4,5)P(3)) suffices to produce GLUT4 translocation is unknown. We used two strategies to deliver PI(3,4,5)P(3) intracellularly and two insulin-sensitive cell lines to examine Akt activation and GLUT4 translocation. In 3T3-L1 adipocytes, the acetoxymethyl ester of PI(3,4,5)P(3) caused GLUT4 migration to the cell periphery and increased the amount of plasma membrane-associated phospho-Akt and GLUT4. Intracellular delivery of PI(3,4,5)P(3) using polyamine carriers also induced translocation of myc-tagged GLUT4 to the surface of intact L6 myoblasts, demonstrating membrane insertion of the transporter. GLUT4 translocation caused by carrier-delivered PI(3,4,5)P(3) was not reproduced by carrier-PI 4,5-bisphosphate or carrier alone. Like insulin, carrier-mediated delivery of PI(3,4,5)P(3) elicited redistribution of perinuclear GLUT4 and Akt phosphorylation at the cell periphery. In contrast to its effect on GLUT4 mobilization, delivered PI(3,4,5)P(3) did not increase 2-deoxyglucose uptake in either L6GLUT4myc myoblasts or 3T3-L1 adipocytes. The ability of exogenously delivered PI(3,4,5)P(3) to augment plasma membrane GLUT4 content without increasing glucose uptake suggests that input at the level of PI 3-kinase suffices for GLUT4 translocation but is insufficient to stimulate glucose transport.  相似文献   
106.
GroEL minichaperones have potential in the biotechnology industry for the refolding of recombinant proteins. With the aim of enhancing and widening their use, we have created two highly stable functional variants of minichaperone GroEL(193-345). A sequence alignment of 130 members of the chaperonin 60 (Cpn60) family was used to design 37 single mutations. Two small-to-large mutations, A223T, A223V and one similar-size mutation, M233L, all located in the hydrophobic core were found to stabilize the protein by more than 1 kcal mol(-1) each. Six stabilizing mutations were combined, yielding two multiple mutants that were 6.99 and 6.15 kcal mol(-1) more stable than wild-type protein. Even though some of the substituted residue pairs are close to each other in the protein structure, the energetic effects of mutation are approximately additive. In particular, the stabilizing substitution A223T is unexpected and would have been missed by purely structural analysis. In the light of previously reported successes employing similar methods with several other proteins, our results show that a homology based approach is a simple and efficient method of increasing the stability of a protein.  相似文献   
107.
High-risk human papillomavirus type 16 (HPV16) is the primary causative agent of cervical cancer and therefore is responsible for significant morbidity and mortality worldwide. Cellular transformation is mediated directly by the expression of viral oncogenes, the least characterized of which, E5, subverts cellular proliferation and immune recognition processes. Despite a growing catalogue of E5-specific host interactions, little is understood regarding the molecular basis of its function. Here we describe a novel function for HPV16 E5 as an oligomeric channel-forming protein, placing it within the virus-encoded "viroporin" family. The development of a novel recombinant E5 expression system showed that E5 formed oligomeric assemblies of a defined luminal diameter and stoichiometry in membranous environments and that such channels mediated fluorescent dye release from liposomes. Hexameric E5 channel stoichiometry was suggested by native PAGE studies. In lieu of high-resolution structural information, established de novo molecular modeling and design methods permitted the development of the first specific small-molecule E5 inhibitor, capable of both abrogating channel activity in vitro and reducing E5-mediated effects on cell signaling pathways. The identification of channel activity should enhance the future understanding of the physiological function of E5 and could represent an important target for antiviral intervention.  相似文献   
108.
Fine needle aspiration of the breast. Importance of the aspirator   总被引:1,自引:0,他引:1  
All 503 fine needle aspirations (FNAs) of the breast performed over a three-year period at the Medical Center Hospital of Vermont were analyzed. There were 93 aspirates diagnosed as "positive," all of which were from patients eventually shown to have cancer. However, there were 38 patients with primary carcinoma in which the FNA was not diagnosed as positive, for a diagnostic failure rate of 31.4%. In order to determine the possible effect of technique as practiced by an experienced aspirator in diminishing such diagnostic failures, we compared 190 aspirates obtained by a single individual with 193 aspirates obtained by 15 individuals in the same community. For the single experienced aspirator, the technical failure rate was 9.8% whereas in the group with many aspirators it was 45.9%. This finding confirms that, although fine needle aspiration of the breast is considered easy to perform, skill on the part of the aspirator is important for satisfactory results.  相似文献   
109.
Reactive oxygen species (ROS) play a key role in the pathogenesis of proteinuria in glomerular diseases like diabetic nephropathy. Glomerular endothelial cell (GEnC) glycocalyx covers the luminal aspect of the glomerular capillary wall and makes an important contribution to the glomerular barrier. ROS are known to depolymerise glycosaminoglycan (GAG) chains of proteoglycans, which are crucial for the barrier function of GEnC glycocalyx. The aim of this study is to investigate the direct effects of ROS on the structure and function of GEnC glycocalyx using conditionally immortalised human GEnC. ROS were generated by exogenous hydrogen peroxide. Biosynthesis and cleavage of GAG chains was analyzed by radiolabelling (S35 and 3H-glucosamine). GAG chains were quantified on GEnC surface and in the cell supernatant using liquid chromatography and immunofluorescence techniques. Barrier properties were estimated by measuring trans-endothelial passage of albumin. ROS caused a significant loss of WGA lectin and heparan sulphate staining from the surface of GEnC. This lead to an increase in trans-endothelial albumin passage. The latter could be inhibited by catalase and superoxide dismutase. The effect of ROS on GEnC was not mediated via the GAG biosynthetic pathway. Quantification of radiolabelled GAG fractions in the supernatant confirmed that ROS directly caused shedding of HS GAG. This finding is clinically relevant and suggests a mechanism by which ROS may cause proteinuria in clinical conditions associated with high oxidative stress.  相似文献   
110.
The effects of changes in various visual and olfactory properties of a white card surface on the landing position of male Epiphyas postvittanaexhibiting pheromone-mediated flight were studied in a wind tunnel. Males landed predominantly at the most downwind position of a surface in line with the pheromone source, regardless of the strength of the source. The position on the surface that males landed was strongly influenced by visual factors. The landing position of males appeared to be influenced by visual cues along all three axes of the surface. Decreases in either the dimension horizontally perpendicular to the wind direction or the vertical dimension resulted in greater numbers of males landing farther upwind on the surface than the downwind edge. Visual changes in the axis along the wind direction also affected the position at which males landed. For example, when presented with two white card surfaces with a 4- cm gap between them, males tended to land on the downwind edge of the upwind surface (on which the source was located). When the gap was bridged with clear Mylar, the landing pattern was significantly different, with the greater proportion of males landing on the downwind surface. However, when Mylar was placed on the plexiglass floor of the tunnel (in addition to bridging the gap), the landing pattern on the surface was not significantly different from that on the two surfaces without the Mylar bridge. It is suggested that during the prelanding and landing phases of pheromone-mediated flight, male moths orient to visual features of the surface containing the pheromone source rather than to visual features of the source (conspecific female moth) itself.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号