首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1001篇
  免费   102篇
  国内免费   1篇
  2021年   8篇
  2020年   8篇
  2018年   10篇
  2016年   12篇
  2015年   18篇
  2014年   18篇
  2013年   39篇
  2012年   46篇
  2011年   30篇
  2010年   18篇
  2009年   24篇
  2008年   33篇
  2007年   46篇
  2006年   45篇
  2005年   25篇
  2004年   28篇
  2003年   28篇
  2002年   33篇
  2001年   27篇
  2000年   38篇
  1999年   28篇
  1998年   21篇
  1997年   9篇
  1996年   14篇
  1995年   13篇
  1994年   8篇
  1993年   7篇
  1992年   32篇
  1991年   31篇
  1990年   38篇
  1989年   28篇
  1988年   36篇
  1987年   17篇
  1986年   24篇
  1985年   24篇
  1984年   15篇
  1983年   16篇
  1982年   17篇
  1981年   10篇
  1980年   11篇
  1979年   9篇
  1978年   15篇
  1977年   11篇
  1976年   14篇
  1974年   9篇
  1973年   9篇
  1971年   9篇
  1970年   8篇
  1967年   7篇
  1966年   8篇
排序方式: 共有1104条查询结果,搜索用时 15 毫秒
101.
The topology of subunit i, a component of the yeast F(o)F(1)-ATP synthase, was determined by the use of cysteine-substituted mutants. The N(in)-C(out) orientation of this intrinsic subunit was confirmed by chemical modification of unique cysteine residues with 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid. Near-neighbor relationships between subunit i and subunits 6, f, g, and d were demonstrated by cross-link formation following sulfhydryl oxidation or reaction with homobifunctional and heterobifunctional reagents. Our data suggest interactions between the unique membrane-spanning segment of subunit i and the first transmembranous alpha-helix of subunit 6 and a stoichiometry of 1 subunit i per complex. Cross-linked products between mutant subunits i and proteins loosely bound to the F(o)F(1)-ATP synthase suggest that subunit i is located at the periphery of the enzyme and interacts with proteins of the inner mitochondrial membrane that are not involved in the structure of the yeast ATP synthase.  相似文献   
102.
103.
 Lysyl oxidase is the extracellular enzyme that catalyzes oxidative deamination of peptidyl-lysine residues in elastin precursors, and lysine and hydroxylysine residues in collagen precursors to form peptidyl-aldehydes. These aldehydes then spontaneously condense to crosslink collagen and elastin and thereby allow the formation of a mature and functional extracellular matrix. In the present study, cryosections made from aseptic immune-induced periapical lesions experimentally generated in laboratory rats were examined by immunohistochemistry to investigate whether lysyl oxidase protein expression is altered in inflamed oral tissues. Periapical lesions are experimentally induced endodontic lesions of tooth roots. In addition, the effect of administration of a mixture of fibroblast growth factor (FGF)-2 and insulin-like growth factor (IGF)-1 into these lesions on lysyl oxidase expression was determined. Lysyl oxidase expression was found to be increased in non-mineralized connective tissue adjacent to inflamed lesions. Morphometric analyses indicated that maximum lysyl oxidase expression occurred at a discrete distance from the lesion not exceeding 350 μm from the inflammatory cells. Staining was associated with mesenchymal cells with a fibroblastic morphology. No lysyl oxidase staining was found near teeth where no lesion was induced. Application of a mixture of FGF-2 and IGF-1 resulted in a further twofold increase in lysyl oxidase expression. These results provide a new in vivo model to study lysyl oxidase regulation, and suggest that inflammatory cells may control lysyl oxidase expression in oral tissues, possibly by a mechanism involving secretion of cytokines and other factors, probably contributing to the regulation of extracellular matrix accumulation. Accepted: 19 December 1998  相似文献   
104.
105.
HIV-1 utilises −1 programmed ribosomal frameshifting to translate structural and enzymatic domains in a defined proportion required for replication. A slippery sequence, U UUU UUA, and a stem-loop are well-defined RNA features modulating −1 frameshifting in HIV-1. The GGG glycine codon immediately following the slippery sequence (the ‘intercodon’) contributes structurally to the start of the stem-loop but has no defined role in current models of the frameshift mechanism, as slippage is inferred to occur before the intercodon has reached the ribosomal decoding site. This GGG codon is highly conserved in natural isolates of HIV. When the natural intercodon was replaced with a stop codon two different decoding molecules—eRF1 protein or a cognate suppressor tRNA—were able to access and decode the intercodon prior to −1 frameshifting. This implies significant slippage occurs when the intercodon is in the (perhaps distorted) ribosomal A site. We accommodate the influence of the intercodon in a model of frame maintenance versus frameshifting in HIV-1.  相似文献   
106.
Osteoarthritis is the leading cause of total hip replacement, accounting for more than 80% of all total hip replacements. Emerging evidence suggests that osteoarthritis has a chronic inflammatory component to its pathogenesis similar to age-related macular degeneration. We evaluated the association between age-related macular degeneration and total hip replacement as proxy for severe osteoarthritis or fractured neck of femur in the Melbourne Collaborative Cohort Study. 20,744 participants had complete data on both age-related macular degeneration assessed from colour fundus photographs taken during 2003–2007 and total hip replacement. Total hip replacements due to hip osteoarthritis and fractured neck of femur during 2001–2011 were identified by linking the cohort records to the Australian Orthopedic Association National Joint Replacement Registry. Logistic regression was used to examine the association between age-related macular degeneration and risk of total hip replacement due to osteoarthritis and fracture separately, adjusted for confounders. There were 791 cases of total hip replacement for osteoarthritis and 102 cases of total hip replacement due to fractured neck of femur. After adjustment for age, sex, body mass index, smoking, and grouped country of birth, intermediate age-related macular degeneration was directly associated with total hip replacement for osteoarthritis (odds ratio 1.22, 95% CI 1.00–1.49). Late age-related macular degeneration was directly associated with total hip replacement due to fractured neck of femur (odds ratio 5.21, 95% CI2.25–12.02). The association between intermediate age-related macular degeneration and an increased 10-year incidence of total hip replacement due to osteoarthritis suggests the possibility of similar inflammatory processes underlying both chronic diseases. The association of late age-related macular degeneration with an increased 10-year incidence of total hip replacement due to fractured neck of femur may be due to an increased prevalence of fractures in those with poor central vision associated with the late complications of age-related macular degeneration.  相似文献   
107.
108.
The goal of this study was to examine metabolic differences between a novel chronic myelogenous leukemic (CML) cell line, MyL, and a sub-clone, MyL-R, which displays enhanced resistance to the targeted Bcr-Abl tyrosine kinase inhibitor imatinib. 1H nuclear magnetic resonance (NMR) spectroscopy was carried out on cell extracts and conditioned media from each cell type. Both principal component analysis (PCA) and specific metabolite identification and quantification were used to examine metabolic differences between the cell types. MyL cells showed enhanced glucose removal from the media compared to MyL-R cells with significant differences in production rates of the glycolytic end-products, lactate and alanine. Interestingly, the total intracellular creatine pool (creatine + phosphocreatine) was significantly elevated in MyL-R compared to MyL cells. We further demonstrated that the MyL-R cells converted the creatine to phosphocreatine using non-invasive monitoring of perfused alginate-encapsulated MyL-R and MyL cells by in vivo 31P NMR spectroscopy and subsequent HPLC analysis of extracts. Our data demonstrated a clear difference in the metabolite profiles of drug-resistant and sensitive cells, with the biggest difference being an elevation of creatine metabolites in the imatinib-resistant MyL-R cells.  相似文献   
109.
For over twenty years, the young, male Homo erectus specimen KNM-WT 15000 has been the focus of studies on growth and development, locomotion, size, sexual dimorphism, skeletal morphology, and encephalization, often serving as the standard for his species. Prior research on KNM-WT 15000 operates under the assumption that H. erectus experienced a modern human life history, including an adolescent growth spurt. However, recent fossil discoveries, improvements in research methods, and new insights into modern human ontogeny suggest that this may not have been the case. In this study, we examine alternative life history trajectories in H. erectus to re-evaluate adult stature estimates for KNM-WT 15000. We constructed a series of hypothetical growth curves by modifying known human and chimpanzee curves, calculating intermediate growth velocities, and shifting the age of onset and completion of growth in stature. We recalculated adult stature for KNM-WT 15000 by increasing stature at death by the percentage of growth remaining in each curve. The curve that most closely matches the life history events experienced by KNM-WT 15000 prior to death indicates that growth in this specimen would have been completed by 12.3 years of age. These results suggest that KNM-WT 15000 would have experienced a growth spurt that had a lower peak velocity and shorter duration than the adolescent growth spurt in modern humans. As a result, it is likely that KNM-WT 15000 would have only attained an adult stature of 163 cm (∼5′4″), not 185 cm (∼6′1″) as previously reported. KNM-WT 15000's smaller stature has important implications for evolutionary scenarios involving early genus Homo.  相似文献   
110.
Cell cycle studies, using PLM analysis, were carried out on a mouse-Chinese hamster cell hybrid and its derivatives which stably retained all parental chromosomes during the year of study. Parameter estimates were obtained from the PLM curves, using conjugate gradient curve fitting procedures. The hybrid initially grew very slowly, and all phases (especially G1) were longer than those of either parent. During propagation, mean generation time decreased progressively, and the phase times approached those of the mouse parent (which had the longer G1 and S). DNA replication could be scored separately in mouse and hamster chromosome sets; initially termination was highly asynchronous, but during growth asynchrony was progressively reduced as DNA synthesis in the hamster set was prolonged. We conclude that cell hybrids may undergo progressive modifications of the cell cycle, even in the absence of significant chromosome segregation, and suggest that such changes may at least partly account for the great variety of relationships between the growth rates and phase times of parent and hybrid cells which have been reported. Because of the complexity of these changes in the cycles of interspecific cell hybrids, we believe that somatic cell genetic analysis of the regulation of the cell cycle would be more usefully applied to intraspecific hybrids whose parents differ in only one specific cycle characteristic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号