首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43487篇
  免费   5377篇
  国内免费   17035篇
  2024年   318篇
  2023年   1070篇
  2022年   1896篇
  2021年   2268篇
  2020年   2198篇
  2019年   2499篇
  2018年   1916篇
  2017年   1799篇
  2016年   1870篇
  2015年   2715篇
  2014年   3656篇
  2013年   3484篇
  2012年   4555篇
  2011年   4423篇
  2010年   3318篇
  2009年   3302篇
  2008年   3864篇
  2007年   3455篇
  2006年   3171篇
  2005年   2601篇
  2004年   2264篇
  2003年   1920篇
  2002年   1711篇
  2001年   1180篇
  2000年   1056篇
  1999年   718篇
  1998年   478篇
  1997年   276篇
  1996年   274篇
  1995年   230篇
  1994年   190篇
  1993年   169篇
  1992年   123篇
  1991年   82篇
  1990年   82篇
  1989年   78篇
  1988年   79篇
  1987年   57篇
  1986年   66篇
  1985年   64篇
  1984年   38篇
  1983年   34篇
  1982年   65篇
  1981年   29篇
  1980年   17篇
  1964年   14篇
  1963年   15篇
  1957年   14篇
  1953年   13篇
  1950年   19篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
951.
Motilin is a 22-amino-acid gastrointestinal polypeptide that was first isolated from the porcine intestine. We identified that motilin receptor is highly expressed in GABAergic interneurons in the basolateral nucleus (BLA) of the amygdala, the structure of which is closely involved in assigning stress disorder and anxiety. However, little is known about the role of motilin in BLA neuronal circuits and the molecular mechanisms of stress-related anxiety. Whole-cell recordings from amygdala slices showed that motilin depolarized the interneurons and facilitated GABAergic transmission in the BLA, which is mimicked by the motilin receptor agonist, erythromycin. BLA local injection of erythromycin or motilin can reduce the anxiety-like behavior in mice after acute stress. Therefore, motilin is essential in regulating interneuron excitability and GABAergic transmission in BLA. Moreover, the anxiolytic actions of motilin can partly be explained by modulating the BLA neuronal circuits. The present data demonstrate the importance of motilin in anxiety and the development of motilin receptor non-peptide agonist as a clear target for the potential treatment of anxiety disorders.  相似文献   
952.
953.
Hepatic stellate cell (HSC) activation plays an important role in liver fibrogenesis. Transdifferentiation of quiescent hepatic stellate cells into myofibroblastic-HSCs is a key event in liver fibrosis. The methyl-CpG-binding protein MeCP2 which promotes repressed chromatin structure is selectively detected in myofibroblasts of diseased liver. MeCP2 binds to methylated CpG dinucleotides, which are abundant in the promoters of many genes. Treatment of HSCs with DNA methylation inhibitor 5-aza-2′- deoxycytidine (5-azadC) prevented proliferation and activation. Treatment with 5-azadC prevented loss of Patched (PTCH1) expression that occurred during HSCs activation. In a search for underlying molecular medchanisms, we investigated whether the targeting of epigenetic silencing mechanisms could be useful in the treatment of PTCH1-associated fibrogenesis. It was indicated that hypermethylation of PTCH1 is associated with the perpetuation of fibroblast activation and fibrosis in the liver. siRNA knockdown of MeCP2 increased the expressions of PTCH1 mRNA and protein in hepatic myofibroblasts. These data suggest that DNA methylation and MeCP2 may provide molecular mechanisms for silencing of PTCH1.  相似文献   
954.
Progressive pulmonary inflammation and emphysema have been implicated in the progression of chronic obstructive pulmonary disease (COPD), while current pharmacological treatments are not effective. Transplantation of bone marrow mesenchymal stem cells (MSCs) has been identified as one such possible strategy for treatment of lung diseases including acute lung injury (ALI) and pulmonary fibrosis. However, their role in COPD still requires further investigation. The aim of this study is to test the effect of administration of rat MSCs (rMSCs) on emphysema and pulmonary function. To accomplish this study, the rats were exposed to cigarette smoke (CS) for 11 weeks, followed by administration of rMSCs into the lungs. Here we show that rMSCs infusion mediates a down‐regulation of pro‐inflammatory mediators (TNF‐α, IL‐1β, MCP‐1, and IL‐6) and proteases (MMP9 and MMP12) in lung, an up‐regulation of vascular endothelial growth factor (VEGF), VEGF receptor 2, and transforming growth factor (TGFβ‐1), while reducing pulmonary cell apoptosis. More importantly, rMSCs administration improves emphysema and destructive pulmonary function induced by CS exposure. In vitro co‐culture system study of human umbilical endothelial vein cells (EA.hy926) and human MSCs (hMSCs) provides the evidence that hMSCs mediates an anti‐apoptosis effect, which partly depends on an up‐regulation of VEGF. These findings suggest that MSCs have a therapeutic potential in emphysematous rats by suppressing the inflammatory response, excessive protease expression, and cell apoptosis, as well as up‐regulating VEGF, VEGF receptor 2, and TGFβ‐1. J. Cell. Biochem. 114: 323–335, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
955.
956.
957.
958.
959.
Congenital human cytomegalovirus (HCMV) infection is the most frequent infectious cause of birth defects, primarily neurological disorders. Neural progenitor/stem cells (NPCs) are the major cell type in the subventricular zone and are susceptible to HCMV infection. In culture, the differentiation status of NPCs may change with passage, which in turn may alter susceptibility to virus infection. Previously, only early-passage (i.e., prior to passage 9) NPCs were studied and shown to be permissive to HCMV infection. In this study, NPC cultures derived at different gestational ages were evaluated after short (passages 3 to 6) and extended (passages 11 to 20) in vitro passages for biological and virological parameters (i.e., cell morphology, expression of NPC markers and HCMV receptors, viral entry efficiency, viral gene expression, virus-induced cytopathic effect, and release of infectious progeny). These parameters were not significantly influenced by the gestational age of the source tissues. However, extended-passage cultures showed evidence of initiation of differentiation, increased viral entry, and more efficient production of infectious progeny. These results confirm that NPCs are fully permissive for HCMV infection and that extended-passage NPCs initiate differentiation and are more permissive for HCMV infection. Later-passage NPCs being differentiated and more permissive for HCMV infection suggest that HCMV infection in fetal brain may cause more neural cell loss and give rise to severe neurological disabilities with advancing brain development.  相似文献   
960.
Phosphatidylinositol (PtdIns) synthase is a key enzyme in the phospholipid pathway and catalyses the formation of PtdIns. PtdIns is not only a structural component of cell membranes, but also the precursor of the phospholipid signal molecules that regulate plant response to environment stresses. Here, we obtained transgenic maize constitutively overexpressing or underexpressing PIS from maize (ZmPIS) under the control of a maize ubiquitin promoter. Transgenic plants were confirmed by PCR, Southern blotting analysis and real‐time RT‐PCR assay. The electrospray ionization tandem mass spectrometry (ESI‐MS/MS)‐based lipid profiling analysis showed that, under drought stress conditions, the overexpression of ZmPIS in maize resulted in significantly elevated levels of most phospholipids and galactolipids in leaves compared with those in wild type (WT). At the same time, the expression of some genes involved in the phospholipid metabolism pathway and the abscisic acid (ABA) biosynthesis pathway including ZmPLC, ZmPLD, ZmDGK1, ZmDGK3, ZmPIP5K9, ZmABA1, ZmNCED, ZmAAO1, ZmAAO2 and ZmSCA1 was markedly up‐regulated in the overexpression lines after drought stress. Consistent with these results, the drought stress tolerance of the ZmPIS sense transgenic plants was enhanced significantly at the pre‐flowering stages compared with WT maize plants. These results imply that ZmPIS regulates the plant response to drought stress through altering membrane lipid composition and increasing ABA synthesis in maize.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号