首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13700篇
  免费   1100篇
  国内免费   1122篇
  15922篇
  2024年   48篇
  2023年   154篇
  2022年   386篇
  2021年   494篇
  2020年   368篇
  2019年   426篇
  2018年   459篇
  2017年   372篇
  2016年   476篇
  2015年   756篇
  2014年   892篇
  2013年   990篇
  2012年   1216篇
  2011年   1176篇
  2010年   777篇
  2009年   673篇
  2008年   867篇
  2007年   806篇
  2006年   645篇
  2005年   594篇
  2004年   592篇
  2003年   466篇
  2002年   398篇
  2001年   314篇
  2000年   278篇
  1999年   252篇
  1998年   112篇
  1997年   74篇
  1996年   61篇
  1995年   66篇
  1994年   59篇
  1993年   46篇
  1992年   83篇
  1991年   78篇
  1990年   56篇
  1989年   51篇
  1988年   40篇
  1987年   24篇
  1986年   28篇
  1985年   26篇
  1984年   13篇
  1983年   20篇
  1982年   18篇
  1981年   13篇
  1980年   20篇
  1979年   19篇
  1977年   18篇
  1975年   15篇
  1974年   17篇
  1970年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
HCC has remained one of the challenging cancers to treat, owing to the paucity of drugs targeting the critical survival pathways. Considering the cancer cells are deficient in DNase activity, the increase of an autonomous apoptisis endonuclease should be a reasonable choice for cancer treatment. In this study, we investigated whether DNASE1L3, an endonuclease implicated in apoptosis, could inhibit the progress of HCC. We found DNASE1L3 was down-regulated in HCC tissues, whereas its high expression was positively associated with the favorable prognosis of patients with HCC. Besides, serum DNASE1L3 levels were lower in HCC patients than in healthy individuals. Functionally, we found that DNASE1L3 inhibited the proliferation of tumor cells by inducing G0/G1 cell cycle arrest and cell apoptosis in vitro. Additionally, DNASE1L3 overexpression suppressed tumor growth in vivo. Furthermore, we found that DNASE1L3 overexpression weakened glycolysis in HCC cells and tissues via inactivating the rate-limiting enzymes involved in PTPN2-HK2 and CEBPβ-p53-PFK1 pathways. Finally, we identified the HBx to inhibit DNASE1L3 expression by up-regulating the expression of ZNF384. Collectively, our findings demonstrated that DNASE1L3 could inhibit the HCC progression through inducing cell apoptosis and weakening glycolysis. We believe DNASE1L3 could be considered as a promising prognostic biomarker and therapeutic target for HCC.  相似文献   
42.

Background

We presented the photoacoustic imaging (PAI) tool and to evaluate whether microcalcifications in breast tissue can be detected on photoacoustic (PA) images.

Methods

We collected 21 cores containing microcalcifications (n = 11, microcalcification group) and none (n = 10, control group) in stereotactic or ultrasound (US) guided 8-gauge vacuum-assisted biopsies. Photoacoustic (PA) images were acquired through ex vivo experiments by transmitting laser pulses with two different wavelengths (700 nm and 800 nm). The presence of microcalcifications in PA images were blindly assessed by two radiologists and compared with specimen mammography. A ratio of the signal amplitude occurring at 700 nm to that occurring at 800 nm was calculated for each PA focus and was called the PAI ratio.

Results

Based on the change of PA signal amplitude between 700 nm and 800 nm, 10 out of 11 specimens containing microcalcifications and 8 out of 10 specimens without calcifications were correctly identified on blind review; the sensitivity, specificity, accuracy, positive predictive and negative predictive values of our blind review were 90.91%, 80.0%, 85.71%, 83.33% and 88.89%. The PAI ratio in the microcalcification group was significantly higher than that in the control group (the median PAI ratio, 2.46 versus 1.11, respectively, P = .001). On subgroup analysis in the microcalcification group, neither malignant diagnosis nor the number or size of calcification-foci was proven to contribute to PAI ratios.

Conclusion

Breast microcalcifications generated distinguishable PA signals unlike breast tissue without calcifications. So, PAI, a non-ionizing and non-invasive hybrid imaging technique, can be an alternative in overcoming the limitations of conventional US imaging.  相似文献   
43.
Adaptive thermogenesis is the cellular process transforming chemical energy into heat in response to cold. A decrease in adaptive thermogenesis is a contributing factor to obesity. However, the molecular mechanisms responsible for the compromised adaptive thermogenesis in obese subjects have not yet been elucidated. In this study we hypothesized that Toll-like receptor 4 (TLR4) activation and subsequent inflammatory responses are key regulators to suppress adaptive thermogenesis. To test this hypothesis, C57BL/6 mice were either fed a palmitate-enriched high fat diet or administered with chronic low-dose LPS before cold acclimation. TLR4 stimulation by a high fat diet or LPS were both associated with reduced core body temperature and heat release. Impairment of thermogenic activation was correlated with diminished expression of brown-specific markers and mitochondrial dysfunction in subcutaneous white adipose tissue (sWAT). Defective sWAT browning was concomitant with elevated levels of endoplasmic reticulum (ER) stress and autophagy. Consistently, TLR4 activation by LPS abolished cAMP-induced up-regulation of uncoupling protein 1 (UCP1) in primary human adipocytes, which was reversed by silencing of C/EBP homologous protein (CHOP). Moreover, the inactivation of ER stress by genetic deletion of CHOP or chemical chaperone conferred a resistance to the LPS-induced suppression of adaptive thermogenesis. Collectively, our data indicate the existence of a novel signaling network that links TLR4 activation, ER stress, and mitochondrial dysfunction, thereby antagonizing thermogenic activation of sWAT. Our results also suggest that TLR4/ER stress axis activation may be a responsible mechanism for obesity-mediated defective brown adipose tissue activation.  相似文献   
44.
Calcium is a universal messenger that translates diverse environmental stimuli and developmental cues into specific cellular and developmental responses. While individual fungal species have evolved complex and often unique biochemical and structural mechanisms to exploit specific ecological niches and to adjust growth and development in response to external stimuli, one universal feature to all is that Ca2+-mediated signaling is involved. The lack of a robust method for imaging spatial and temporal dynamics of subcellular Ca2+ (i.e., “Ca2+ signature”), readily available in the plant and animal systems, has severely limited studies on how this signaling pathway controls fungal growth, development, and pathogenesis. Here, we report the first successful expression of a FRET (Förster Resonance Energy Transfer)-based Ca2+ biosensor in fungi. Time-lapse imaging of Magnaporthe oryzae, Fusarium oxysporum, and Fusarium graminearum expressing this sensor showed that instead of a continuous gradient, the cytoplasmic Ca2+ ([Ca2+]c) change occurred in a pulsatile manner with no discernable gradient between pulses, and each species exhibited a distinct Ca2+ signature. Furthermore, occurrence of pulsatile Ca2+ signatures was age and development dependent, and major [Ca2+]c transients were observed during hyphal branching, septum formation, differentiation into specialized plant infection structures, cell–cell contact and in planta growth. In combination with the sequenced genomes and ease of targeted gene manipulation of these and many other fungal species, the data, materials and methods developed here will help understand the mechanism underpinning Ca2+-mediated control of cellular and developmental changes, its role in polarized growth forms and the evolution of Ca2+ signaling across eukaryotic kingdoms.  相似文献   
45.
46.
47.
48.
Aldose reductase (AR) is abundantly expressed in a variety of cell lineages and has been implicated in the cellular response against oxidative stress. However, the exact functional role of AR against oxidative stress remains relatively unclear. This study investigated the role of AR in acrolein- or hydrogen peroxide-induced apoptosis using the J774.A.1 macrophage cell line. Ablation of AR with a small interference RNA or inhibition of AR activity significantly enhanced the acrolein- or hydrogen peroxide-induced generation of reactive oxygen species and aldehydes, leading to increased apoptotic cell death. Blockade of AR activity in J774A.1 cells markedly augmented the acrolein- or hydrogen peroxide-induced translocation of Bax to mitochondria along with reduced Bcl-2 and increased release of cytochrome c from the mitochodria. Taken together, these findings indicate that AR plays an important role in the cellular response against oxidative stress, by sequestering the reactive molecules generated in cells exposed to toxic substances.  相似文献   
49.
The two-pore K2P channel family comprises TASK, TREK, TWIK, TRESK, TALK, and THIK subfamilies, and TALK-1, TALK-2, and TASK-2 are functional members of the TALK subfamily. Here we report for the first time the single-channel properties of TALK-2 and its pHo sensitivity, and compare them to those of TALK-1 and TASK-2. In transfected COS-7 cells, the three TALK K2P channels could be identified easily by their differences in single-channel conductance and gating kinetics. The single-channel conductances of TALK-1, TALK-2, and TASK-2 in symmetrical 150 mM KCl were 21, 33, and 70 pS (-60 mV), respectively. TALK-2 was sensitive mainly to the alkaline range (pH 7-10), whereas TALK-1 and TASK-2 were sensitive to a wider pHo range (6-10). The effect of pH changes was mainly on the opening frequency. Thus, members of the TALK family expressed in native tissues may be identified based on their single-channel kinetics and pHo sensitivity.  相似文献   
50.
Following the demonstration that the rate of evolutionary change in the amino acid sequences of cytochromes c of eukaryotic species was not constant either for a single line of phylogenetic descent during different evolutionary intervals or for separate lines of descent, the concept that neutral mutations account for the vast majority of the evolutionary variations could no longer be accepted. Previous studies had shown that all eukaryotic cytochromes c tested appeared to be functionally indistinguishable in their reaction with mitochondrial respiratory chain components. However, an examination of the kinetics at low ionic strength led to the discovery of a high affinity reaction of cytochrome c with cytochrome c oxidase that revealed large differences in activity between the cytochromes of the horse, baker's yeast and the protist Euglena. Observed Km values for this reaction of 10(-7) to 10(-8) M appear to represent actual dissociation constants, as demonstrated by direct binding studies of cytochrome c with purified cytochrome c oxidase. The high affinity reaction is sensitive to ionic strength and inhibited by ADP and ATP in the range of physiological concentrations, ATP being three times as effective as ADP. The possibility is discussed that this effect of ATP on cytochrome c binding to its oxidase could provide the basis of a mechanism for mitochondrial respiratory control. The demonstration of differences between cytochrome c of various species in this kinetic system opens the way to a systematic study of the possible evolutionary adaptations of cytochromes c to their oxidases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号