首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111543篇
  免费   6906篇
  国内免费   19篇
  118468篇
  2023年   639篇
  2022年   812篇
  2021年   1611篇
  2020年   1366篇
  2019年   1505篇
  2018年   2851篇
  2017年   2577篇
  2016年   3486篇
  2015年   4590篇
  2014年   4923篇
  2013年   6340篇
  2012年   7366篇
  2011年   6623篇
  2010年   4453篇
  2009年   3612篇
  2008年   5413篇
  2007年   5133篇
  2006年   4940篇
  2005年   4197篇
  2004年   4235篇
  2003年   3746篇
  2002年   3506篇
  2001年   2810篇
  2000年   2601篇
  1999年   2127篇
  1998年   1055篇
  1997年   779篇
  1996年   799篇
  1995年   752篇
  1994年   681篇
  1993年   613篇
  1992年   1284篇
  1991年   1198篇
  1990年   1142篇
  1989年   1196篇
  1988年   996篇
  1987年   1017篇
  1986年   927篇
  1985年   983篇
  1984年   803篇
  1983年   715篇
  1979年   809篇
  1978年   612篇
  1975年   703篇
  1974年   760篇
  1973年   720篇
  1972年   659篇
  1970年   628篇
  1969年   692篇
  1968年   648篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Macrophages (M?) and dendritic cells (DC) are the major target cell populations of the obligate intracellular parasite Leishmania. Inhibition of host cell apoptosis is a method employed by multiple pathogens to ensure their survival in the infected cell. Leishmania has been shown to protect M? and neutrophils from both natural and induced apoptosis. As shown in this study, apoptosis in monocyte-derived dendritic cells (moDC) induced by treatment with camptothecin was downregulated by coincubation with L. mexicana, as detected by morphological analysis of cell nuclei, TUNEL assay, gel electrophoresis of low molecular weight DNA fragments, and annexin V binding to phosphatidylserine. The observed antiapoptotic effect was found to be associated with a significant reduction of caspase-3 activity in moDC. The capacity of L. mexicana to delay apoptosis induction in the infected moDC may have implications for Leishmania pathogenesis by favoring the invasion of its host and the persistence of the parasite in the infected cells.  相似文献   
992.
993.
Microtubule-associated protein 1B (MAP1B) is a neuronal protein involved in the stabilization of microtubules both in the axon and somatodendritic compartments. Acute, genetic inactivation of MAP1B leads to delayed axonal outgrowth, most likely due to changes in the post-translational modification of tubulin subunits, which enhances microtubule polymerization. Furthermore, MAP1B deficiency is accompanied by abnormal actin microfilament polymerization and dramatic changes in the activity of small GTPases controlling the actin cytoskeleton. In this work, we showed that MAP1B interacts with a guanine exchange factor, termed Tiam1, which specifically activates Rac1. These proteins co-segregated in neurons, and interact in both heterologous expression systems and primary neurons. We dissected the molecular domains involved in the MAP1B-Tiam1 interaction, and demonstrated that pleckstrin homology (PH) domains in Tiam1 are responsible for MAP1B binding. Interestingly, only the light chain 1 (LC1) of MAP1B was able to interact with Tiam1. Moreover, it was able to increase the activity of the small GTPase, Rac1. These results suggest that the interaction between Tiam1 and MAP1B, is produced by the binding of LC1 with PH domains in Tiam1. The formation of such a complex impacts on the activation levels of Rac1 confirming a novel function of MAP1B related with the control of small GTPases. These results also support the idea of cross-talk between cytoskeleton compartments inside neuronal cells.  相似文献   
994.
While magnetoreception in birds has been studied intensively, the literature on magnetoreception in bony fish, and particularly in non-migratory fish, is quite scarce. We examined alignment of common carps (Cyprinus carpio) at traditional Christmas sale in the Czech Republic. The sample comprised measurements of the directional bearings in 14,537 individual fish, distributed among 80 large circular plastic tubs, at 25 localities in the Czech Republic, during 817 sampling sessions, on seven subsequent days in December 2011. We found that carps displayed a statistically highly significant spontaneous preference to align their bodies along the North-South axis. In the absence of any other common orientation cues which could explain this directional preference, we attribute the alignment of the fish to the geomagnetic field lines. It is apparent that the display of magnetic alignment is a simple experimental paradigm of great heuristic potential.  相似文献   
995.
The chestnut blight pathogen Cryphonectria parasitica was studied in a chestnut collection composed of both seedlings and grafts derived from selected Castanea sativa and C. sativa × C. crenata trees located in south-east Slovakia, near village Príbelce on an area of approximately 3.5 ha. The study was conducted during eight years (2003–2010). During this period 133 trees were infected, which represents 59.82% of chestnut trees of all chestnut accessions. Based on the phenotype of the fungus culture and the type of cankers in the field, all isolates were determined to be virulent. No hypovirulent strains were found. No vegetative compatibility (vc) type diversity was observed. More than 130 isolates were analyzed for vc and all were in single vc type, which was identical with EU 12. All isolates assayed for mating type were MAT-1. No perithecia were observed. No significant differences were found between the proportion of cankered and dead cankered trees in seedlings and grafts of hybrid origin (C. sativa × C. crenata) and of C. sativa origin. However, particular seedlings and grafts of hybrid origin seemed to exhibit certain resistance to chestnut blight.  相似文献   
996.
Traditional quantitative genetics assumes that an individual''s phenotype is determined by both genetic and environmental factors. For many animals, part of the environment is social and provided by parents and other interacting partners. When expression of genes in social partners affects trait expression in a focal individual, indirect genetic effects occur. In this study, we explore the effects of indirect genetic effects on the magnitude and range of phenotypic values in a focal individual in a multi-member model analyzing three possible classes of interactions between individuals. We show that social interactions may not only cause indirect genetic effects but can also modify direct genetic effects. Furthermore, we demonstrate that both direct and indirect genetic effects substantially alter the range of phenotypic values, particularly when a focal trait can influence its own expression via interactions with traits in other individuals. We derive a function predicting the relative importance of direct versus indirect genetic effects. Our model reveals that both direct and indirect genetic effects can depend to a large extent on both group size and interaction strength, altering group mean phenotype and variance. This may lead to scenarios where between group variation is much higher than within group variation despite similar underlying genetic properties, potentially affecting the level of selection. Our analysis highlights key properties of indirect genetic effects with important consequences for trait evolution, the level of selection and potentially speciation.  相似文献   
997.
Light is one of the most important factor influencing plant growth and development all through their life cycle. One of the well-known light-regulated processes is de-etiolation, i.e. the switch from skotomorphogenesis to photomorphogenesis. The hormones cytokinins (CKs) play an important role during the establishment of photomorphogenesis as exogenous CKs induced photomorphogenesis of dark-grown seedlings. Most of the studies are conducted on the plant model Arabidopsis, but no or few information are available for important crop species, such as tomato (Solanum lycopersicum L.). In our study, we analyzed for the first time the endogenous CKs content in tomato hypocotyls during skotomorphogenesis, photomorphogenesis and de-etiolation. For this purpose, two tomato genotypes were used: cv. Rutgers (wild-type; WT) and its corresponding mutant (7B-1) affected in its responses to blue light (BL). Using physiological and molecular approaches, we identified that the skotomorphogenesis is characterized by an endoreduplication-mediated cell expansion, which is inhibited upon BL exposure as seen by the accumulation of trancripts encoding CycD3, key regulators of the cell cycle. Our study showed for the first time that iP (isopentenyladenine) is the CK accumulated in the tomato hypocotyl upon BL exposure, suggesting its specific role in photomorphogenesis. This result was supported by physiological experiments and gene expression data. We propose a common model to explain the role and the relationship between CKs, namely iP, and endoreduplication during de-etiolation and photomorphogenesis.  相似文献   
998.
The olfactory system, particularly the olfactory epithelium, presents a unique opportunity to study the regenerative capabilities of the brain, because of its ability to recover after damage. In this study, we ablated olfactory sensory neurons with methimazole and followed the anatomical and functional recovery of circuits expressing genetic markers for I7 and M72 receptors (M72-IRES-tau-LacZ and I7-IRES-tau-GFP). Our results show that 45 days after methimazole-induced lesion, axonal projections to the bulb of M72 and I7 populations are largely reestablished. Furthermore, regenerated glomeruli are re-formed within the same areas as those of control, unexposed mice. This anatomical regeneration correlates with functional recovery of a previously learned odorant-discrimination task, dependent on the cognate ligands for M72 and I7. Following regeneration, mice also recover innate responsiveness to TMT and urine. Our findings show that regeneration of neuronal circuits in the olfactory system can be achieved with remarkable precision and underscore the importance of glomerular organization to evoke memory traces stored in the brain.  相似文献   
999.
1000.
Phyllostomid bats are prominent components of mammalian assemblages in the Neotropics. With many species specialized in frugivory, phyllostomids represent major partners of fleshy-fruited plants in the mutualism of seed dispersal. Here we present dietary data from two subtropical rainforests of Argentina, where fruit diversity is low and thus offer unique opportunities to test hypotheses of diet selection originally proposed for species-rich tropical assemblages. Particularly, we tested whether frugivorous phyllostomids exhibit pronounced dietary specialization in core plant taxa where fruit offer is greatly reduced as compared to tropical rainforests. We analyzed dietary overlap and niche breadth of subtropical frugivorous bats on the basis of >1000 dietary records plus >500 samples from a previous study in the region. We show that in the subtropics, frugivores from different genera remain faithful to their respective core plant taxa with few exceptions, rather than shifting toward alternative fruit resources available in the study sites. This supports predictions of specialization, which is confirmed to have a deep historical origin. The response of phyllostomid ensembles to restricted fruit diversity is at the level of species composition: absence of species for which preferred fruits do not occur in the sites. Taken together, these data lend strong support to hypotheses that explain coexistence of frugivorous phyllostomids on the basis of dietary specialization on core plant taxa with chiropterochorous fruits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号